Branchennachricht |
Chemiestudium: Diplom-Studiengänge noch vor Bachelor und Master
|
04.07.06 |
Die Gesellschaft Deutscher Chemiker (GDCh) hat, wie in den Vorjahren, auch für 2005 umfangreiche statistische Daten zu den Chemiestudiengängen von den Hochschulen erbeten. Die Ergebnisse der Umfrage, die Statistik der Chemiestudiengänge, wurden von der GDCh soeben veröffentlicht. Aus der Statistik geht u.a. hervor, dass sich bereits 30 Prozent der Studienanfänger im Fach Chemie und 50 Prozent der Studienanfänger im Fach Biochemie in einem Bachelor-Studiengang eingeschrieben hatten, während Bachelor- und Masterabschlüsse zahlenmäßig gegenüber Diplom und Promotion noch nicht ins Gewicht fielen. Die Zahl der von der Industrie eingestellten Absolventen stieg wieder leicht an. An deutschen Universitäten begannen im Vorjahr 4181 Anfänger ihr Diplom-Chemie-Studium. Dazu kamen 1777 Anfänger in einem Bachelor-Studiengang, so dass die Summe der Chemieanfänger bei 5958 Personen lag (Vorjahr 5963). Der Anteil weiblicher Studienanfänger in der Chemie lag bei 44%. Die Gesamtzahl der Chemiestudierenden betrug 26913 Studenten, darunter 3147 in Bachelor-Studiengängen, 564 in Masterstudiengängen und 5147 Doktoranden. Zusätzlich waren insgesamt 643 Studierende, davon 131 Studienanfänger, im Studiengang Wirtschaftschemie immatrikuliert. Der Anteil ausländischer Studierender lag im Diplom-Studiengang bei 15%, im Bachelor-Studiengang bei 11% und im Master-Studiengang bei 44%. Auffällig war der hohe Ausländeranteil von 27% unter den Doktoranden. Offensichtlich kommen in erster Linie fortgeschrittene ausländische Studierende nach Deutschland, um ein Master-Studium oder eine Promotion zu absolvieren. 2005 bestanden 1805 Studierende das Vordiplom in Chemie und 82 in Wirtschaftschemie (Vorjahr 1669+46). 254 Studierende beendeten ihr Bachelor- und 71 das Master-Studium. Die Zahl der Diplomprüfungen stieg von 1128 (2004) auf 1271. Die Anzahl der Promotionen betrug 1331 (Vorjahr 1303). 28% der promovierten Absolventen kam aus dem Ausland. Der Anteil der Studentinnen betrug beim Vordiplom 41%, beim Diplom 42% und bei der Promotion 31%. Die durchschnittliche Studiendauer bis zum Diplom einschließlich der Diplomarbeit betrug 11,8 Semester, bis zur Promotion 20,1 Semester. Die Medianwerte lagen bei 10,7 und 19,0 Semestern. (Der Medianwert, gibt an, im wievielten Semester 50% der Studierenden die Prüfung abgelegt haben.) Der größte Teil der Diplom-Chemiker (90%) schloss wie in den Vorjahren unmittelbar an den Diplom-Abschluss die Doktorarbeit an. Von den promovierten Absolventen wurden 30% in der Chemischen Industrie eingestellt. Im Vorjahr hatte dieser Wert bei 29% gelegen. 10% fanden eine Anstellung in der übrigen Wirtschaft und 20% der Chemiker gingen nach der Promotion zunächst ins Ausland, in den meisten Fällen zu einem Postdoc-Aufenthalt. 18% betrug der Anteil derjenigen, die eine zunächst befristete Stelle im Inland annahmen und 5% der Absolventen blieben nach der Promotion im Forschungsbereich an einer Hochschule oder einem Forschungsinstitut. Ebenfalls 5% kamen im öffentlichen Dienst unter, 1% nahm ein Zweitstudium auf und 2% wurden freiberuflich tätig. 10% der promovierten Absolventen (Vorjahr 12%) waren zum Zeitpunkt der Umfrage stellensuchend. (Bedingt durch den Umfragezeitpunkt sinkt dieser Wert kaum unter 5%. Die tatsächliche Arbeitslosigkeit der Absolventen ist daher geringer.) Fast alle Bachelor-Absolventen, deren Verbleib bekannt war, nahmen ein Master-Studium auf und fast alle Master-Absolventen begannen eine Promotion. Biochemie, Lebensmittelchemie, Lehramt und FH-Studiengänge Im Studiengang Biochemie betrug die Anfängerzahl 850, davon 422 in Bachelor-Studiengängen. Die Gesamtzahl der Studierenden betrug 4899, einschließlich 899 Bachelor-Studierende, 181 Master-Studierende und 726 Doktoranden. Der Frauenanteil war mit 62% bei den Anfängern und mit 53% an der Gesamtzahl der Studierenden höher als im Chemiestudiengang. Im vergangenen Jahr legten 497 Studierende das Vordiplom ab, 468 bestanden das Diplom und 167 wurden in Biochemie promoviert. Im Mittel benötigten die Studierenden bis zum Diplom 10,5 und bis zur Promotion 19,4 Semester. Die Median-Werte lagen bei 9,7 und 18,6 Semestern. 103 Studierende beendeten das Studium mit dem Bachelor- und 20 mit dem Master- Abschluss. Im Studiengang Lebensmittelchemie begannen 426 Personen ihr Studium. Der Frauenanteil lag bei 75%. Die Gesamtzahl der Studierenden betrug 1902, dazu kamen 257 Doktoranden. Im vergangenen Jahr bestanden 247 Studierende die Vorprüfung, 206 Studierende absolvierten das erste Staatsexamen und 107 die Diplomprüfung. Die meisten dieser Diplomprüfungen waren kombinierte Abschlüsse, bei denen Studierende gleichzeitig Diplom und Staatsexamen ablegten. 137 Studierende absolvierten das 2. Staatsexamen. Im vergangenen Jahr wurden 37 Promotionen abgelegt. Die Dauer für Studium und Doktorarbeit betrug durchschnittlich 16,7 Semester. Bei den angehenden Lehrern sind die Anfängerzahlen im Vergleich zum Vorjahr deutlich angestiegen und betrugen für das Lehramt an Haupt- und Realschulen (Sekundarstufe I) 1059 und für das Lehramt an Gymnasien (Sekundarstufe II) 1600 (Vorjahr 772 und 1556). Dazu kamen 580 Anfänger in einem lehramtbezogenen Bachelor-Studiengang. 120 Anfänger schrieben sich für das Lehramt für Berufsschulen ein. 252 Studierende bestanden die Prüfungen für die Sekundarstufe I und 401 für die Sekundarstufe II. An den Fachhochschulen und den DI-Studiengängen der Gesamthochschulen begannen 2005855 Personen ein Diplom-Studium im Fach Chemie oder in anderen chemiebezogenen Studiengängen, 495 Anfänger entschieden sich für einen Bachelor-Studiengang an einer Fachhochschule (Vorjahr 1409 und 174). Die Gesamtzahl der Studierenden betrug im vergangenen Jahr 5416 Personen, wovon 733 in Bachelor- und 164 in Master-Studiengängen studierten. Unter allen Chemiestudierenden an einer FH sind Frauen mit 42% vertreten. Ausländische Studierende stellen 10% in "traditionellen" Studiengängen, 16% in Bachelor- und 52% in Master-Studiengängen. Im Jahr 2005 bestanden 562 Studierende die Diplomprüfung, davon 43% Frauen. Dazu kommen je 22 Bachelor- und 53 Master-Absolventen. Die Studiendauern bis zur Diplomprüfung lagen bei 9,6 im Mittel und 8,7 im Median. Die Statistik der Chemiestudiengänge ist auf den Internet-Seiten der GDCh (www.gdch.de), Bereich "Karriereservice und Stellenmarkt", als pdf-File hinterlegt. Sie kann gegen einen Kostenbeitrag von EUR 80,00 bei der GDCh-Geschäftsstelle in Frankfurt (karriere@gdch.de) als Broschüre angefordert werden. Die Gesellschaft Deutscher Chemiker (GDCh) ist mit über 27.000 Mitgliedern eine der größten chemiewissenschaftlichen Gesellschaften weltweit. Sie befasst sich u.a. auch mit der Entwicklung an den Hochschulen und am Arbeitsmarkt. Mit der Erhebung von Anfänger- und Absolventenzahlen, Studiendauern sowie dem Verbleib der Absolventen ermöglicht sie Prognosen über die Zahl der künftigen Absolventen und bietet einen guten Überblick über den Arbeitsmarkt für Berufseinsteiger. Kontakt: Dr. Renate Hoer Gesellschaft Deutscher Chemiker Öffentlichkeitsarbeit Postfach 900440 60444 Frankfurt Tel.: 0697917493 Fax: 0697917307 E-Mail: r.hoer@gdch.de Quelle: www.pressrelations.de |
Branchennachricht |
Die Körpersprache von Biomolekülen
|
20.04.06 |
Woher weiß eine Zelle, dass sie sich teilen soll? Wie erhält ein Enzym die Botschaft, ein bestimmtes Gen zu aktivieren? In welcher Weise werden Signale aus der Umwelt ins Zellinnere weitergeleitet? Schalter im Miniformat sorgen dafür, dass alle diese Prozesse nach Plan ablaufen. Dabei verständigen sich die Biomoleküle, meistens Proteine, in einer besonderen Sprache: Über Änderungen ihrer Form - auch Konformation genannt - leiten sie Signale weiter oder blockieren eine Reaktion. Die geringfügigste Änderung ihrer räumlichen Struktur kann dabei verheerende Fehlschaltungen zur Folge haben. Wird beispielsweise ein Proteinschalter, der das Signal für Zellteilung gibt, in seiner Stellung 'An' festgehalten, werden sich die Zellen unkontrolliert teilen und es entsteht Krebs. Diesen grundlegenden und faszinierenden molekularen Prozessen in den Schaltmolekülen der Zellen widmet sich die VolkswagenStiftung in ihrer Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion', die 1998 ins Leben gerufen wurde. Für acht Vorhaben in dieser Initiative bewilligt die Stiftung jetzt rund 3,3 Millionen Euro: 1.) 429.000 Euro für das Vorhaben 'Information transmission pathways in an allosteric protein' von Professor Dr. Wolfgang Hillen und Professor Dr. Yves Muller vom Institut für Biologie der Universität Erlangen-Nürnberg und Professor Dr. Peter Gmeiner vom Institut für Pharmazie und Lebensmittelchemie, ebenfalls Universität Erlangen-Nürnberg; 2.) 787.700 Euro für das Vorhaben 'TGF-beta signalling biosensors' von Dr. Marcos González-Gaintán vom Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, Professor Dr. James Smith vom Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, und Dr. Carsten Schultz, Gene Expression Unit am Europäischen Laboratorium für Molekularbiologie in Heidelberg; 3.) 375.800 Euro für das Vorhaben 'Substrate Control of the active conformation of the respiratory complex I' von Professor Dr. Thorsten Friedrich und Professor Dr. Bernhard Breit vom Institut für Organische Chemie und Biochemie der Universität Freiburg sowie Professorin Dr. Petra Hellwig von der Faculté de Chimie, Université Louis Pasteur, Strasbourg. Nähere Informationen zu diesen Vorhaben finden Sie im Folgenden - außerdem im Anschluss eine Übersicht der weiteren bewilligten Projekte Zu 1: Interne Kommunikation von Proteinen Wie erfährt die rechte Hälfte, was die linke gerade tut? Viele Proteine besitzen mindestens zwei räumlich voneinander getrennte Bindestellen, an denen Substrate oder andere Moleküle andocken können. Bei diesen 'allosterischen' Proteinen wird in der Regel die Aktivität der einen Bindestelle vom Zustand der anderen gesteuert. Bindet also ein so genanntes Effektormolekül an der einen Seite, wird diese Information über Änderung der räumlichen Form an die andere Bindestelle weitergegeben. Das Resultat ist auch dort eine Konformationsänderung, die nun eine weitere Aktivität zulässt oder stoppen kann. Zwar hat man heute mit Kristallstrukturen bereits eine Reihe von Proteinen mit Substraten und Effektoren dreidimensional sichtbar machen können - doch Regeln für die Mechanik und Energetik proteininterner Kommunikation gibt es bisher nicht. Hier setzen die Wissenschaftler aus Erlangen-Nürnberg mit ihrem Projekt an: Am Beispiel des Tet-Repressors wollen sie die Informationsweitergabe analysieren und allgemein gültige Prinzipien herausfinden. Tetrazyklin ist als Antibiotikum bekannt, das die bakterielle Proteinsynthese hemmt. Es fungiert beim Tet-Repressor als Effektormolekül, reguliert über Bindung an den Repressor die Genexpression. Der Tet-Repressor ist strukturell sehr gut untersucht und bietet sich als Modell an. Die Wissenschaftler haben bereits Varianten des Rezeptors mit veränderter Allosterie sowie ein Peptid isoliert, das den Rezeptor durch eine andere Strukturänderung induziert als Tetrazyklin. Auch neuartige Tetrazyklinderivate werden getestet, um den Kontaktketten zwischen den Bindestellen auf die Spur zu kommen. Die Kombination von Molekulargenetik, Synthesechemie und strukturellen Methoden erhöht die Chancen, zu allgemein gültigen Prinzipien zu kommen. ------------------------------- Kontakte zu Projekt 1 Universität Erlangen-Nürnberg Institut für Biologie Lehrstuhl für Mikrobiologie Prof. Dr. Wolfgang Hillen Telefon: 091318528081 E-Mail: whillen@biologie.uni-erlangen.de Institut für Biologie Lehrstuhl für Biotechnik Prof. Dr. Yves Muller Telefon: 091318523081 E-Mail: ymuller@biologie.uni-erlangen.de Institut für Pharmazie und Lebensmittelchemie Prof. Dr. Peter Gmeiner Telefon: 091318522584 E-Mail: gmeiner@pharmazie.uni-erlangen.de ------------------------------------------ Zu 2: Biosensoren machen Signalketten sichtbar Nicht einzelne Signale, sondern komplexe Signalkaskaden sorgen dafür, dass sich ein Embryo entwickeln kann. Wichtige Signale geben dabei die Wachstumsfaktoren der Transforming Growth Factor beta-Familie, kurz TGF-?. Sie werden bereits intensiv erforscht, denn wenn ihre Signalfunktion im Zellwachstum außer Kontrolle gerät, können Krebs und andere Krankheiten entstehen. Während die molekularen Aspekte der Signalkette und die konformationellen Änderungen einzelner Komponenten schon recht gut bekannt sind, weiß man wenig über die zeitliche und räumliche Dynamik der Prozesse. Hierfür interessiert sich das Team aus Dresden, Heidelberg und Cambridge: Die Forscher wollen Biosensoren für verschiedene Komponenten der Signalkette 'bauen' und damit die Etappen der Signalweiterleitung in Echtzeit verfolgen. Biosensoren sind Messfühler, die mit biologischen Komponenten ausgestattet sind. Ihr Einsatz macht es möglich, Protein-Protein-Wechselwirkungen in der lebenden Zelle auch quantitativ zu bestimmen. Ziel der Forscher ist es vor allem, TGF-Signale sowohl während der Embyonalentwicklung als auch für bestimmte Krankheiten zu messen. ------------------------------------------------------------- Kontakte zu Projekt 2 Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden Dr. Marcos González-Gaitán Telefon:03512102539 E-Mail: gonzalez@mpi-cbg.de University of Cambridge Prof. Dr. James Smith Telefon: 00441223334133 E-Mail: j.bate@gurdon.cam.ac.uk Europäisches Laboratorium für Molekularbiologie, Heidelberg Dr. Carsten Schultz Telefon: 06221387210 E-Mail: carsten.schultz@EMBL-Heidelberg.de ------------------------------------------ Zu 3: Energiegewinn durch räumliche Bewegungen Auch bei der Energiegewinnung von Zellen spielen Konformationsänderungen von Molekülen und Molekülkomplexen die entscheidende Rolle. In der Atmungskette - dem entscheidenden Prozess im Energiestoffwechsel - wird ATP bereitgestellt, die universelle Energiewährung, die alles antreibt. Der erste Komplex der Zellatmung ist die NADH:Ubichinon-Oxidoreduktase, ein Enzym, das eine wichtige Schaltstelle darstellt: Es überträgt Elektronen vom Elektronencarrier NADH auf Ubichinon und nutzt die dabei freiwerdende Energie, um Protonen von der Innenseite der Membran nach außen zu transportieren. Auf diese Weise entsteht ein Membranpotenzial, das zum Aufbau des Energieträgers ATP, aber auch für Transportvorgänge und andere energieabhängige Vorgänge genutzt werden kann. Der Mechanismus dieses wichtigen Enzymkomplexes am Beginn der Atmungskette ist noch weitgehend unverstanden. Klar ist, dass die Bindung von NADH, nicht jedoch von NADPH - der phosphorylierten Form - große räumliche Bewegungen auslöst und das Molekül für Ubichinon öffnet. Die Wissenschaftler aus Freiburg und Strasbourg wollen in dem von der VolkswagenStiftung geförderten Vorhaben untersuchen, welche Konformationsänderungen abgewandelte NADH-Derivate zur Folge haben. Die Untersuchungen an der NADH:Ubichinon-Oxidoreduktase sind auch für die Medizin relevant, denn eine Fehlfunktion dieses Komplexes ist mit neurodegenerativen Krankheiten wie dem Parkinson-Syndrom verknüpft. -------------------------------------- Kontakte zu Projekt 3: Universität Freiburg Institut für Organische Chemie und Biochemie Prof. Dr. Thorsten Friedrich Telefon: 07612036060 E-Mail: tfriedri@uni-freiburg.de Prof. Dr. Bernhard Breit Telefon: 07612036051 E-Mail: bernhard.breit@orgmail.chemie.uni-freiburg.de Université Louis Pasteur, Strasbourg Prof. Dr. Petra Hellwig E-Mail: hellwig@chimie.u-strasbg.fr -------------------------------------- Bewilligt wurden in der Initiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' auch folgende fünf Vorhaben: 4.) 461.800 Euro für das Vorhaben 'Synthetic selectivity filters for porin-like ion channels' von Professor Dr. Ulrich Koert, Professor Lars-Oliver Essen und Dr. Henning Mootz vom Fachbereich Chemie der Universität Marburg; Kontakt zu Projekt 4: Universität Marburg Fachbereich Chemie Professor Dr. Ulrich Koert Telefon: 064212826970 E-Mail: koert@chemie.uni-marburg.de ----------------------------------- 5.) 79.400 Euro für das Vorhaben 'Conformation-activity relationship of the archazolids: Development of a novel class of highly potent V-ATPase inhibitors' von Dr. Dirk Menche von der Abteilung Medizinische Chemie der Gesellschaft für Biotechnologische Forschung in Braunschweig (GBF) und Dr. Teresa Carlomgno vom Max-Planck-Institut für biophysikalische Chemie in Göttingen; Kontakt zu Projekt 5: GBF Braunschweig Abteilung Med. Chemie Dr. Dirk Menche Telefon: 05316181346 E-Mail: dirk.menche@gbf.de ---------------------------------- 6.) 359.000 Euro für das Vorhaben 'Elucidation of the conformational dynamics of the spliceosome using small molecule inhibitors' von Professor Dr. Reinhard Lührmann und Privatdozent Dr. Markus Wahl von der Abteilung Zelluläre Biochemie am Max-Planck-Institut für biophysikalische Chemie in Göttingen und Professor Dr. Herbert Waldmann vom Fachbereich Chemie, Chemische Biologie, Universität Dortmund; Kontakt zu Projekt 6: Max-Planck-Institut für biophysikalische Chemie Abt. Zelluläre Biochemie Prof. Dr. Reinhard Lührmann Telefon: 05512011405 E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de ------------------------------------------ 7.) 398.800 Euro für die Fortsetzung des Vorhabens 'Pleckstring domains: from allosteric regulation of protein function towards novel tools for monitoring intracellular reactions' von Dr. Carsten Schultz und Dr. Michael Sattler, beide EMBL - Europäisches Laboratorium für Molekularbiologie in Heidelberg, und Professor Dr. Mathias Gautel, Cardiovascular Division der GKT School of Medicine, King's College, London; Kontakt zu Projekt 7: EMBL, Heidelberg Dr. Michael Sattler Telefon: 06221387552 E-Mail: sattler@embl-heidelberg.de ----------------------------------- 8.) 393.100 Euro für die Fortsetzung des Vorhabens 'Modulation of the slow conformational dynamics in Ras and Ras-related proteins by drugs: development of an new type of specific Ras-inhibitor' von Professor Dr. Hans-Robert Kalbitzer vom Institut für Biophysik und physikalische Biochemie sowie Professor Dr. Burkhard König vom Institut für Organische Chemie, beide Universität Regensburg, und Professor Dr. Christian Herrmann von der Fakultät für Chemie, Physikalische Chemie, Universität Bochum. Kontakt zu Projekt 8: Universität Regensburg Institut für Biophysik und physikalische Biochemie Prof. Dr. Hans-Robert Kalbitzer Telefon: 09419432595 E-Mail: hans-robert.kalbitzer@biologie.uni-regensburg.de -------------------------------------------------------- Die Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' wird in diesem Jahr eingestellt. Sie hat dazu beigetragen, das Gebiet der Chemischen Biologie in Forschung und Lehre in der deutschen wie europäischen Forschungslandschaft zu verankern. Über die gesamte bisherige Laufzeit wurden - einschließlich der jetzigen Vorhaben - 125 Bewilligungen ausgesprochen, für die rund 23 Millionen Euro bereit gestellt wurden. Mit Stichtag 15. September 2006 können die letzten Anträge eingereicht werden. Kontakt VolkswagenStiftung Presse- und Öffentlichkeitsarbeit Dr. Christian Jung Telefon: 05118381380 E-Mail: jung@volkswagenstiftung.de Kontakt Förderinitiative der VolkswagenStiftung Dr. Matthias Nöllenburg Telefon: 05118381290 E-Mail: noellenburg@volkswagenstiftung.de |
|