Standard-Firmeneintrag |
|
InterChemica |
50126 |
Bergheim |
|
Handel und Vertrieb von Basis Chemikalien, Düngemittel, chemische Erzeugnisse, Spezialprodukten. |
Unser Produktsortiment besteht aus hochqualitativen Produkten von folgenden führenden Chemiewerken in Ukraine, Russland und Polen: - Close JSC „Severodonetsk Azot Association“ - Open JSC „ Crimean Soda Plant“ - JSC „ToliattiAzot“ - JSC „Artiomsol“ - JSC Kazanorgsintes - JSC Concern „Stirol“ - Ameropa AG Dank unserer festen Geschäftsbeziehungen mit den o.g. Produzenten sind wir wirklich in der Lage die sicheren und zuverlässigen Lieferungen zu gewährleisten. Unsere Hauptprodukte sind: Salz technisch., Essigsäure, Diethylen-Glycol (DEG), Mono-Ethylen-Glycol (MEG), Sodium Nitrat, Ammonium Nitrat, Urea gran./prilled, Salz Vinyl Acetate Region: Nordrhein-Westfalen http:// www.interchemica.de Ort: Bergheim Straße: Gutenbergstrasse 33 Tel.: +492271996029 Fax: +492271996030 E-Mail: info@interchemica.de |
Standard-Firmeneintrag |
|
L. Brüggemann KG - Reduktionsmittel |
74072 |
Heilbronn |
|
BrüggemannChemical ist ein Geschäftsbereich der BrüggemannGruppe. Die Seite Industriechemikalien stellt die Produkte Reduktionsmittel, Zinkoxid und Spezialchemikalien dar. |
BrüggemannChemical ist ein Geschäftsbereich der BrüggemannGruppe. Die Seite Industriechemikalien stellt die Produkte Reduktionsmittel, Zinkoxid und Spezialchemikalien dar. Des Weiteren produziert BrüggemannChemical eigene Lösungen im Bereich Reduktionsmittel und Zinkderivate. Produkte wie das Brüggolit FF6 oder FF7 prägen dabei das Erscheinungsbild des Unternehmens. Region: Baden-Württemberg http:// www.brueggemann.com/spezielle-reduktionsmittel.html Ort: Heilbronn Straße: Salzstr. Tel.: 0713115750 Fax: E-Mail: sh@beyond-media.net |
|
Int. Fachmesse für Autowerkstatt- und Tankstellenausstattung, Kfz-Ersatzteile und -Zubehör, chemische Erzeugnisse und Umwelttechnik. Turnus: 2-jährig |
|
Branchennachricht |
Salzgehalt von Meerwasser zuverlässig messen
|
19.10.07 |
Einen großen Einfluss auf das Weltklima haben die globalen Meerwasserströme, die wiederum von Schwankungen der Wasserdichte angetrieben werden. Um die Dichte von Seewasser zu berechnen, misst man (neben Temperatur und Druck) dessen Salzgehalt, die Salinität. Sie ist eine der wesentlichen Klimavariablen, die im Global Climate Observation System (GCOS) weltweit unter Beobachtung stehen. Die UNESCO hat 1978 die so genannte Praktische Salinitätsskala (PSS-78) in Kraft gesetzt, die die Grundlage für eine international akzeptierte Methode bildet, die Salinität aus Messungen der Leitfähigkeit von Meerwasser zu berechnen. Diese Skala ist jedoch nicht auf SI-Einheiten zurückgeführt. Aus diesem Grund wurde die Rückführbarkeit der Salinitätsbestimmung jetzt in einer ersten EUROMET-Studie untersucht. Die Studie hat gezeigt, dass die verschiedenen Messergebnisse zwar weitestgehend miteinander gut vergleichbar sind, dass es aber bei den Themen Rückführung und Messunsicherheiten in der Tat noch Handlungsbedarf gibt. Das Ergebnis der Studie als pdf: http://www.euromet.org/projects/search/reports/918_METCHEM_Final.pdf Mehr zum Thema auf den Internetseiten der Arbeitsgruppe: http://www.ptb.de/de/org/331313/ptbsem230_de.htm Ansprechpartner: Petra Spitzer, PTB-Arbeitsgruppe 3.13 Elektrochemie, Tel. (0531) 5923130, E-Mail: petra.spitzer@ptb.de Dr. Steffen Seitz, PTB-Arbeitsgruppe 3.13 Elektrochemie, Tel. (0531) 5923019, E-Mail: steffen.seitz@ptb.de Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=300070 |
Branchennachricht |
Uni Bochum und ThyssenKrupp gründen Forschungsinstitut zur Entwicklung neuer Werkstoffe
|
10.11.06 |
Land NRW und Industrie stellen 24 Millionen Euro für fünf Jahre bereit - Das Ministerium für Innovation, Wissenschaft, Forschung und Technologie, die Ruhr-Universität Bochum und die ThyssenKrupp AG teilen mit: Die Ruhr-Universität Bochum gründet gemeinsam mit der ThyssenKrupp AG und weiteren Industriepartnern unter Einbindung des Max-Planck-Instituts für Eisenforschung (Düsseldorf), des Forschungszentrums Jülich und der RWTH Aachen ein neues Forschungsinstitut für Werkstoffforschung und Werkstoffentwicklung. Das "Interdisciplinary Centre for Advanced Materials Simulation" mit Sitz an der Ruhr-Universität Bochum wird in den kommenden fünf Jahren mit 24 Millionen Euro finanziert, die zur Hälfte vom Land NRW und zur Hälfte von der Industrie bereitgestellt werden. Darüber hinaus sollen über zusätzliche Projektmittel in den kommenden zehn Jahren dem Institut insgesamt 50 Millionen Euro zur Verfügung gestellt werden. Ab sofort beginnen die Partner mit der Umsetzung des Gründungskonzepts, so dass das Institut Anfang 2008 seine Arbeit aufnehmen kann. Dem Konsortium haben sich mit Bayer MaterialScience AG, der Salzgitter AG und der Robert Bosch GmbH bereits drei weitere Unternehmen angeschlossen. NRW-Innovationsminister Prof. Andreas Pinkwart sagte, das neue Institut sei ein "Musterbeispiel für gelungene Zusammenarbeit von Wirtschaft, Hochschulen und außeruniversitärer Forschung. Die stärksten Akteure, die wir im Werkstoffbereich in NRW haben, bündeln hier ihre Kräfte." Das Forschungsinstitut habe die Möglichkeit, international sichtbare Spitzenforschung im Ruhrgebiet zu betreiben und der Werkstoff- und Produktionsindustrie wichtige Impulse zu geben. "Das neue Institut ist ein weiterer Erfolg auf unserer Aufholjagd zum Innovationsland Nr. 1 in Deutschland. Es ist ein wichtiges Signal für den Aufbruch zu mehr Forschung und Entwicklung in NRW", sagte Pinkwart. Den Großteil der Mittel aus der Industrie stellt die ThyssenKrupp AG zur Verfügung. Dr. Karl-Ulrich Köhler, Vorstandsmitglied der ThyssenKrupp AG und Vorstandsvorsitzender der ThyssenKrupp Steel AG, erwartet vom Institut, dass es dazu beiträgt, Deutschland zu einem der weltweit führenden Standorte in der Werkstoffinnovation zu machen. Zudem stelle es eine enorme Bereicherung für das Ruhrgebiet dar, das Deutschlands Zentrum für Werkstoffherstellung ist. In diesem Bereich arbeiten im Ruhrgebiet rund 135.000 Beschäftigte, das sind 30 Prozent aller in Deutschland in der Werkstoffherstellung tätigen Mitarbeiter. Die Branche hat an den Industrieumsätzen in Nordrhein-Westfalen einen Anteil von etwa zehn Prozent. Das Forschungsinstitut wird zwei Welten miteinander vereinen, die bislang noch weitgehend nebeneinander forschen: die Welt der Werkstoffingenieure einerseits und die Welt der Physiker, Chemiker und Wissenschaftler andererseits. In durch Großrechner gestützten Simulationsverfahren - das Institut wird dabei intensiv mit dem Forschungszentrum Jülich kooperieren - werden die Wissenschaftler sowohl Grundlagenforschung betreiben als auch anwendungsorientiert forschen. "Wir erhoffen uns beispielsweise Erkenntnisse für die Entwicklung neuer Stähle für die Automobilindustrie oder für selbstheilende Oberflächen zur Vermeidung von Lackschäden. Entscheidend ist aber, dass die Methodik für die Erstellung neuer Werkstoffe vor riesigen Fortschritten steht, vor allem durch den Einsatz modernster Hochleistungscomputer, wie sie in Jülich zu finden sind", sagte Köhler. Prof. Gerhard Wagner, Rektor der Ruhr-Universtität Bochum, bezeichnete es als "Ausweis der Forschungsstärke unserer Universität", dass Bochum sich als Standort im Wettbewerb gegen starke Konkurrenz durchgesetzt habe. "Auch mit Blick auf unsere Anträge auf Forschungscluster in den Materialwissenschaften und der Systemchemie für die nächste Rund der Exzellenzinitiative ist dies ein wichtiger Schritt nach vorn", sagter Wagner. Das neue Institut steht für Spitzenforschung, aber auch für exzellente Lehre, denn die drei Stiftungsprofessuren, für die jetzt international ausgewiesene Wissenschaftler gesucht werden, werden das Lehrangebot der Uni Bochum mit einem neuen Studiengang im Bereich der Werkstoffsimulation noch attraktiver machen. Die Zusammenarbeit mit dem Max-Planck-Institut für Eisenforschung in Düsseldorf, der RWTH Aachen, dem Forschungszentrum Jülich sowie den Unternehmen werden Bochum zu einem exzellenten Zentrum für Werkstoffforschung machen. Ansprechpartner: ThyssenKrupp AG Dr. Jürgen Claassen Communications and Strategy Telefon: +49 (211) 82436002 Telefax: +49 (211) 82436005 E-Mail: press@thyssenkrupp.com Internet: www.thyssenkrupp.com Quelle: www.pressrelations.de |
Branchennachricht |
Bakterien stellen Nano-Cluster aus Edelmetall her
|
14.08.06 |
Die Nanotechnologie wird von Experten als die Schlüsseltechnologie des 21. Jahrhunderts bezeichnet. Winzigkleine Partikel - ein Nanometer entspricht einem Millionstel Millimeter - werden heute bereits eingesetzt im Automobilbau, in der Optik und Elektronik oder auch in Materialien für Medizin und Hygiene. Die Natur hat eigene Mechanismen auf der Nanometerskala entwickelt. Grundlegendes Wissen um diese natürlichen Prozesse kann zur Entwicklung neuer Nano-Materialien beitragen. Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt. Seine Eiweißhülle, im Fachjargon S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall. In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil. Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt. Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden. Die Biologen Dr. Katrin Pollmann, Dr. Mohamed Merroun, Dr. Johannes Raff, Dr. Sonja Selenska-Pobell und der Biophysiker Dr. habil. Karim Fahmy entschlüsselten vor kurzem mit unterschiedlichen Methoden den Mechanismus, wo und wie das Bakterium Edelmetalle in seiner schützenden Proteinhülle bindet. So charakterisierte Karim Fahmy mit Hilfe von Infrarotlicht die Natur der chemischen Gruppen, die die Metall-Protein-Wechselwirkung so stabil machen. Aufgrund dieser Ergebnisse und der bereits vollständig von der Gruppe entschlüsselten Struktur des S-Layers gelang es Johannes Raff, die Bausteine der Proteinhülle, die an der Metallbindung beteiligt sind, zu bestimmen. Mohamed Merroun und Dr. Christoph Hennig, ein weiterer Kollege des Teams, klärten mit Hilfe von Röntgenlicht an der Rossendorf Beamline der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble/Frankreich die atomare Umgebung des Palladiums in der biologischen Matrix. Die Forschungsergebnisse wurden in der Augustausgabe der Fachzeitschrift Biophysical Journal veröffentlicht (http://www.biophysj.org/) in dem Artikel von Karim Fahmy, Mohamed Merroun, Katrin Pollmann, Johannes Raff, Olesya Savchuk, Christoph Hennig, Sonja Selenska-Pobell: "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy". Wesentlich für den Erfolg dieser Arbeit war die zielgerichtete Integration sich ergänzender Forschungsmethoden von Biologie, Chemie, Physik und Spektroskopie. Insgesamt beschäftigen sich weltweit bisher nur wenige Forschergruppen mit den spezifischen Eigenschaften von bakteriellen S-Layern, einem neuen und vielversprechenden Forschungsfeld. Weitere Informationen: Dr. Sonja Selenska-Pobell, Dr. Johannes Raff, Dr. Katrin Pollmann Institut für Radiochemie Tel.: 03512602989 oder - 2951 oder - 2946 s.selenska-pobell@fz-rossendorf.de, j.raff@fz-rossendorf.de, k.pollmann@fz-rossendorf.de Dr. Karim Fahmy Institut für Strahlenphysik Die aktuelle Telefonnummer kann über die FZR-Pressestelle erfragt werden. Pressekontakt: Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit Forschungszentrum Rossendorf Tel.: 03512602450 oder 016096928856 Fax: 03512602700 c.bohnet@fz-rossendorf.de Postanschrift: Postfach 510119 ? 01314 Dresden Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden Information: Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie, o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006). Quelle: www.pressrelations.de |
Branchennachricht |
Fachdidaktik Chemie: Ein neues Modell macht Schule
|
26.06.06 |
Das Projekt eröffnet neue Wege sowohl in der fachdidaktischen Ausbildung an der Universität des Saarlandes als auch an den Schulen: Angehende Lehramtskandidaten im Fach Chemie erhalten die Möglichkeit, eigenverantwortlich lehrplanbezogene Experimente zu entwickeln und anschließend gemeinsam mit dem Dozenten didaktisch auszuwerten. Aber auch die Schülerinnen und Schüler profitieren: Unter fachgerechter Anleitung können sie die Experimente selbst durchführen und dadurch komplexe naturwissenschaftliche Sachzusammenhänge nachvollziehen. Gerade in den Naturwissenschaften tragen Experimente entscheidend zum Erkenntnisgewinn bei und sind daher sowohl in der Lehre als auch in der Forschung von zentraler Bedeutung. Alle ausgewählten Themen sind alltagsrelevant; behandelt werden drei Themenkomplexe: Im Kapitel "Säuren und Laugen" lernen die Schüler maßanalytische Verfahren kennen (Titrationen), mit denen Säuregehalte verschiedener Alltagsprodukte, beispielsweise in Haushaltsessig und in Limonaden, bestimmt werden können. Beim Thema "Wasser und Wasseraufbereitung" wird im Labor die Wirkungsweise einer Kläranlage vorgestellt, indem organische Stoffe und Schwermetalle experimentell aus Wasser entfernt werden. Wie die großtechnische Anwendung des Verfahrens aussieht, erfahren die Schüler beim Besuch der Kläranlage Burbach. Im Mittelpunkt des dritten Themenkomplex stehen "im Trinkwasser gelöste Salze". Die Schüler lernen im Labor eine qualitative Möglichkeit zum Nachweis verschiedener Ionen kennen, die beispielsweise auf dem Etikett von Mineralwasser-Flaschen aufgeführt sind. Nach diesem praktischen Teil werden die einzelnen Schülergruppen ihre Ergebnisse in den Schulen überarbeiten und präsentieren. Ein übergeordnetes Ziel des Projektes besteht in der Aufarbeitung der Experimente für die europäischen Partnerschulen bzw. im Deutsch Französischen Gymnasium im Rahmen eines integrierten Sach-Fach-Projektes. So werden die Schüler der französischen und deutschen Klassen des Deutsch Französischen Gymnasiums Arbeitsgruppen bilden und die an Saar-Uni gewonnenen Resultate gemeinsam auswerten und präsentieren. Dadurch werden auch die Sprachkompetenzen in der jeweiligen Partnersprache besonders gestärkt. Die Gestaltung der Gruppenversuche und deren didaktische Umsetzung mit den Schülern wird von angehenden Lehramtskandidaten im Rahmen der fachdidaktischen Ausbildung des Institutes für Allgemeine und Anorganische Chemie der Universität des Saarlandes unter Anleitung von Prof. Dr. Michael Veith und Priv. Doz. Dr. Hermann Sachdev durchgeführt. Dieses Projekt ist ein Beispiel für die Kompetenz der UdS in der deutsch- französischen Ausbildung, die auch durch das Frankreichzentrum gefördert wird. Für weitere Informationen wenden Sie sich bitte an: Priv. Doz. Dr. Hermann Sachdev Anorganische und Allgemeine Chemie FR 8.1 Tel. (0681) 3022465 E-Mail: h.sachdev@mx.uni-saarland.de Quelle: www.pressrelations.de |
|