Standard-Firmeneintrag |
|
nir-support Roland Winzen |
40667 |
Meerbusch |
|
nir-support bietet herstellerunabhängige Beratung, Schulung und Applikationsentwicklung im Bereich der NIR-Spektroskopie (Nahinfrarot-Spektroskopie, NIRS) mit chemometrischer Auswertung. |
NIR-Spektroskopie (Nahinfrarot-Spektroskopie, kurz NIR oder NIRS) ist die universale Zukuntfstechnik in der Qualitätssicherung, Prozeßanalytik, Wareneingangskontrolle (Rohstoff-Identifizierung) und überall dort, wo größere Probenmengen (auch zerstörungsfrei) schnell analysiert werden müssen. NIR ist schneller, preiswerter und besser automatisierbar als vergleichbare analytische Methoden in Labor und Betrieb. Mit über 20 Jahren Erfahrung unterstützt Sie der nir-support durch Machbarkeitsstudien, Applikationsberatung, Kalibrierservices, Methodenentwicklung, Schulungen für Anfänger und Fortgeschrittene und erarbeitet für Sie komplette Lösungen, die Ihre analytische Aufgabe effektiv mit Hilfe der NIR-Spektroskopie umsetzen. Kontaktieren Sie den nir-support für eine kostenlose und unverbindliche Anfangsberatung! http://www.nir-support.com/ Region: Nordrhein-Westfalen http:// www.nir-support.com/ Ort: Meerbusch Straße: Brühler Weg 57 Tel.: +49 (0)21321376961 Fax: +49 (0)21321376963 E-Mail: informationen@nir-support.com |
Standard-Firmeneintrag |
|
nir-concept GmbH |
45327 |
Essen |
|
Die nir-concept GmbH bietet als Komplettdienstleister in der Nahinfrarot-Spektroskopie Nir-Beratung und Nir-Anwendungen an. |
Die nir-concept GmbH ist als Komplettdienstleister in der Nahinfrarot-Spektroskopie - kurz NIR-Spektroskopie - tätig. Wir begleiten Sie und setzen auf Grundlage unseres NIR-Wissens verschiedene NIR-Anwendungen um. nir-concept kombiniert kompetente NIR-Dienstleistungen mit optimalen Spektrometersystemen zu einer kundenspezifischen Gesamtlösung. Das Team von nir-concept greift auf umfassende Fachkenntnisse der NIR-Spektroskopie sowie auf eine langjährige industrielle Erfahrung in der Labor- und Prozessanalytik zurück. Region: Nordrhein-Westfalen http:// www.nir-concept.de Ort: Essen Straße: Katernberger Str. 107 Tel.: +49 (0)2018485020 Fax: +49 (0)2018485021 E-Mail: submit@nir-concept.de |
Stellen-Angebot |
17.11.09 09:42 |
Doktorandenstelle an der Universität Oldenburg zum Thema "Synthese von Pt/Sn Nanopartikeln"
|
In der Abteilung Energie- und Halbleiterforschung am Institut für Physik der Universität Oldenburg ist im Rahmen eines Projektes zum Thema „Synthese und Charakterisierung bimetallischer Pt/Sn-Nanopartikel als Katalysatoren für die CO-Oxidation und Hydrierungen“ eine Doktorandenstelle (E 13 TV-L / 50 %) ab sofort zur Promotion zu besetzen. In vielen Reaktionen von Gasen über trägerfixierten Metallnanopartikeln hängen die Aktivität und Selektivität stark von strukturellen Parametern des Katalysators wie der Größe oder der Form der eingesetzten Nanopartikel ab. Ein hohes Potential zur Erlangung einer Reaktionskontrolle durch die gezielte Steuerung von strukturellen Parametern bietet die Kolloidchemie, welche durch die Verwendung organischer Liganden in der Synthese ein äußerst hohes Maß an Kontrolle über Eigenschaften wie die Partikelgröße und -form sowie die Zusammensetzung im Falle mehrkomponentiger Systeme ermöglicht. Im Rahmen einer Promotion sollen auf kolloidchemischem Wege bimetallische Pt/Sn-Nanopartikel mit steuerbarer Partikelgröße, -form und Zusammensetzung hergestellt werden, wobei auf in der Gruppe bestehende Erfahrungen mit reinen Pt-Partikeln zurückgegriffen werden kann. Die strukturelle Charakterisierung der Nanopartikel und ihrer Ligandenhülle z.B. mit Elektronenmikroskopie (TEM), Röntgenbeugung (XRD) und kernresonanzspektroskopie (NMR) wird ebenfalls zu den Arbeitsaufgaben gehören. Das Vorhaben ist eingebettet in eine Kooperation mit 2 Partnern an den Universitäten Oldenburg und Bremen, welche beispielsweise weiterführende Strukturuntersuchungen mit Photoelektronen-Spektroskopie (XPS) durchführen und das Anwendungspotential der Nanopartikel in der heterogenen Katalyse anhand ausgewählter Testreaktionen evaluieren (z.B. CO-Oxidation und Hydrierungen kleiner organischer Moleküle). Die Kandidatin/der Kandidat soll eine chemisch orientierte Ausbildung (z.B. Chemie- oder Physikstudium mit Chemie als Nebenfach) mitbringen. Die Carl-von-Ossietzky-Universität strebt an, den Frauenanteil im Wissenschaftsbereich zu erhöhen. Deshalb werden Frauen nachdrücklich aufgefordert, sich zu bewerben. Gem. § 21 Abs. 3 NHG sollen Bewerberinnen bei gleichwertiger Qualifikation bevorzugt berücksichtigt werden. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt. Bewerbungen (in Papierform oder per Email) sind baldmöglichst zu richten an: Dr. Holger Borchert (holger.borchert@uni-oldenburg.de) und/oder Prof. Dr. Joanna Kolny-Olesiak (joanna.kolny@uni-oldenburg.de) Postanschrift: Universität Oldenburg Institut für Physik 26111 Oldenburg |
holger.borchert@uni-oldenburg.de joanna.kolny@uni-oldenburg.de |
Branchennachricht |
Chemische Nanofabrik in Sachsen
|
12.12.07 |
Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434 |
Branchennachricht |
Chemische Nanofabrik in Sachsen
|
07.12.07 |
Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434 |
Branchennachricht |
Potsdamer Chemiker forschen in Verbundprojekt zur Verbesserung der Qualität von Lebens- und Futtermittel
|
03.02.07 |
Das Bundesministerium für Bildung und Forschung fördert jetzt mit insgesamt 2,6 Millionen Euro ein Verbundprojekt, das dazu beitragen soll, die Qualität von Lebens- und Futtermitteln zu verbessern. Das Projekt "ProSenso.net2" (PSn2): "Erschließung von Nachhaltigkeits-potenzialen durch Nutzung innovativer Sensortechnologien und ganzheitlicher Bewertungsmodelle in der Produktionskette von pflanzlichen Lebensmitteln" wird vom Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V. (ATB) koordiniert. Beteiligt daran sind auch Wissenschaftler aus dem Bereich der Physikalischen Chemie der Universität Potsdam. Im Projekt ProSenso.net2 erarbeiten nun fünf Forschungsinstitute und acht Unternehmen bis September 2009 neuartige sensorgestützte Lösungskonzepte. Dabei untersuchen die Wissenschaftler einerseits Getreide und andererseits Obst, Gemüse und Kartoffeln. Sensoren werden eingesetzt, um Prozess- und Produktqualitäten während der Lagerung und beim Transport vor Ort zu bestimmen. Die Forscher interessiert dabei insbesondere der Nachweis von Mikroorganismen, sowohl zur Vermeidung von Verderb als auch der Entstehung von Schimmelpilzgiften. Denn Schimmelpilze und ihre Toxine bedrohen die Qualität von Lebens- und Futtermitteln an vielen Stellen der Produktionskette, so beispielsweise bei der Getreidelagerung, -aufbereitung und -verarbeitung. Im Rahmen des Teilprojektes "Indikatoren und Sensortechnik zur Erkennung von Mykotoxinbildnern in der Getreideaufbereitung" erfolgt die Identifizierung von mit Schimmelpilzen oder deren Toxinen belasteten Getreidepartien. Die Grundlagenforschung hinsichtlich der spektroskopischen Parameter wird am Institut für Chemie der Universität Potsdam von Claudia Rasch durchgeführt. Die im Arbeitskreis von Prof. Dr. Hans-Gerd Löhmannsröben tätige Diplom-Chemikerin führt hierzu Untersuchungen mit Hilfe der optischen Spektroskopie im Ultraviolett- und Infrarotbereich an Getreide-, Pilz- und Toxinproben durch und bewertet die Methoden. Die Ergebnisse der Teilbereiche des Verbundprojektes werden dann vernetzt und in die Praxis übertragen. Zur Person: Claudia Rasch studierte von 2001 bis 2006 Chemie an der Friedrich-Schiller-Universität Jena. Ihre Diplomarbeit mit dem Thema "Forensische Vergleichsuntersuchungen mineralischer und anthropogener Bodenbestandteile" verfasste sie am Bundeskriminalamt Wiesbaden, in der Abteilung Kriminaltechnik. Seit Oktober 2006 arbeitet die Diplom-Chemikerin im Arbeitskreis von Prof. Dr. Hans-Gerd Löhmannsröben an der Universität Potsdam. Hinweis an die Redaktionen: Als Ansprechpartner stehen Ihnen Prof. Dr. Hans-Gerd Löhmannsröben, PD Dr. Michael Kumke und Dipl.-Chem. Claudia Rasch aus dem Institut für Chemie der Universität Potsdam telefonisch unter 03319775222, -5209, -5259, sowie per E-Mail: loeh@chem.uni-potsdam.de, kumke@chem.uni-potsdam.de beziehungsweise Claudia.Rasch@uni-potsdam.de zur Verfügung. Diese Medieninformation ist auch unter http://www.uni-potsdam.de/pressmitt/2007/pm028_07.htm im Internet abrufbar. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=266138 |
Branchennachricht |
Bakterien stellen Nano-Cluster aus Edelmetall her
|
14.08.06 |
Die Nanotechnologie wird von Experten als die Schlüsseltechnologie des 21. Jahrhunderts bezeichnet. Winzigkleine Partikel - ein Nanometer entspricht einem Millionstel Millimeter - werden heute bereits eingesetzt im Automobilbau, in der Optik und Elektronik oder auch in Materialien für Medizin und Hygiene. Die Natur hat eigene Mechanismen auf der Nanometerskala entwickelt. Grundlegendes Wissen um diese natürlichen Prozesse kann zur Entwicklung neuer Nano-Materialien beitragen. Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt. Seine Eiweißhülle, im Fachjargon S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall. In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil. Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt. Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden. Die Biologen Dr. Katrin Pollmann, Dr. Mohamed Merroun, Dr. Johannes Raff, Dr. Sonja Selenska-Pobell und der Biophysiker Dr. habil. Karim Fahmy entschlüsselten vor kurzem mit unterschiedlichen Methoden den Mechanismus, wo und wie das Bakterium Edelmetalle in seiner schützenden Proteinhülle bindet. So charakterisierte Karim Fahmy mit Hilfe von Infrarotlicht die Natur der chemischen Gruppen, die die Metall-Protein-Wechselwirkung so stabil machen. Aufgrund dieser Ergebnisse und der bereits vollständig von der Gruppe entschlüsselten Struktur des S-Layers gelang es Johannes Raff, die Bausteine der Proteinhülle, die an der Metallbindung beteiligt sind, zu bestimmen. Mohamed Merroun und Dr. Christoph Hennig, ein weiterer Kollege des Teams, klärten mit Hilfe von Röntgenlicht an der Rossendorf Beamline der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble/Frankreich die atomare Umgebung des Palladiums in der biologischen Matrix. Die Forschungsergebnisse wurden in der Augustausgabe der Fachzeitschrift Biophysical Journal veröffentlicht (http://www.biophysj.org/) in dem Artikel von Karim Fahmy, Mohamed Merroun, Katrin Pollmann, Johannes Raff, Olesya Savchuk, Christoph Hennig, Sonja Selenska-Pobell: "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy". Wesentlich für den Erfolg dieser Arbeit war die zielgerichtete Integration sich ergänzender Forschungsmethoden von Biologie, Chemie, Physik und Spektroskopie. Insgesamt beschäftigen sich weltweit bisher nur wenige Forschergruppen mit den spezifischen Eigenschaften von bakteriellen S-Layern, einem neuen und vielversprechenden Forschungsfeld. Weitere Informationen: Dr. Sonja Selenska-Pobell, Dr. Johannes Raff, Dr. Katrin Pollmann Institut für Radiochemie Tel.: 03512602989 oder - 2951 oder - 2946 s.selenska-pobell@fz-rossendorf.de, j.raff@fz-rossendorf.de, k.pollmann@fz-rossendorf.de Dr. Karim Fahmy Institut für Strahlenphysik Die aktuelle Telefonnummer kann über die FZR-Pressestelle erfragt werden. Pressekontakt: Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit Forschungszentrum Rossendorf Tel.: 03512602450 oder 016096928856 Fax: 03512602700 c.bohnet@fz-rossendorf.de Postanschrift: Postfach 510119 ? 01314 Dresden Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden Information: Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie, o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006). Quelle: www.pressrelations.de |
|