Chemie- und Pharma-Industrie
Chemie & Pharma
Verpackungsbranche

DRESDEN in Chemie

Chemie - DRESDEN

Chemie Unternehmen - Jobs - Stellen - Markt

11 Treffer mit dem Suchbegriff
 
Termin / Veranstaltung
13.04.10 -
14.04.10
Printed Electronics Europe Dresden, Germany
  Europe\\\'s leading event on printed electronics. End User Requirements, Market Analysis, Technical Progress and Routes to Market. Printed electronics is an antidote to recession, which is why Printed Electronics Europe grows every year. Now it is even more important to jump into the future. Turnus: 1-jährig  
 
Termin / Veranstaltung
22.03.11 -
23.03.11
SMART SYSTEMS INTEGRATION Dresden, Germany
  European Conference & Exhibition. SMART SYSTEMS INTEGRATION - die internationale Kommunikationsplattform für Industrie und Forschungsinstitute dient dem Wissenstransfer zum Thema Smart Systems Integration. Die Veranstaltung schafft die Basis für erfolgreiche Forschungskooperationen mit Schwerpunkt Europa.  
 
Branchennachricht
12.12.07

Chemische Nanofabrik in Sachsen

Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434
 
Branchennachricht
07.12.07

Chemische Nanofabrik in Sachsen

Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434
 
Branchennachricht
04.04.07

An der TU Dresden werden neue Methoden der Wasserstoffspeicherung erforscht

Wasserstoff ist ein ideales Material zur Energiespeicherung. Das Gas lässt sich ressourcenschonend mittels regenerativer Energiequellen herstellen und kann ohne Verbrennungsprozesse direkt elektrochemisch in elektrische Energie umgewandelt werden. Allerdings ist Wasserstoff unter Normalbedingungen ein Gas mit geringer Energiedichte, daher sind nicht nur Autohersteller weltweit auf der Suche nach effektiven Speichermöglichkeiten. Wissenschaftler in der Fachrichtung Chemie (Physikalische Chemie) der TU Dresden arbeiten deshalb schon seit einiger Zeit an der Entwicklung neuer Festkörperspeicher, in denen sich Wasserstoff in die Zwischenräume des Gerüstmaterials anlagert. Die Eigenschaften dieser neu zu entwickelnden Werkstoffe, Kohlenstoffnanostrukturen mit geeigneten "Spacer-Molekülen" oder die so genannten MOFs (Metal Organic Frameworks), werden am Computer simuliert, ihre Stabilität, ihre Speicherkapazität und ihre Wärmeleitfähigkeit vorhergesagt. Trotz der relativ geringen Anziehungskraft der Gerüste der Nanostrukturen auf den Wasserstoff erlauben es nanostrukturierte Materialien, nennenswerte H2-Speicherkapazitäten zu erreichen. Die umfangreichen Berechnungen der Arbeitsgruppe wurden in den vergangenen Jahren unter anderem am damals schnellsten Supercomputer der Welt, dem "Earth Simulator" in Yokohama (Japan), durchgeführt. Nun bietet der neue Hochleistungsrechner am Zentrum für Informationsdienste und Hochleistungsrechnen der TU Dresden die Möglichkeit, die Simulationen kostengünstiger und zeitnah an der eigenen Universität durchzuführen. Die in der Arbeitsgruppe entwickelte Software nutzt die Vorzüge von Supercomputern mit global verfügbarem Speicher und ist somit optimal für den Einsatz im lokalen Rechenzentrum. Denn im Gegensatz zu den weltweit immer häufiger eingesetzten Computerclustern, die aus unabhängigen Einzelrechnern zusammengesetzt sind, ermöglicht er den gleichzeitigen Zugriff seiner Prozessoren auf den gemeinsamen immensen Hauptspeicher. Erste Tests auf der neuen Maschine zeigen, dass quantenmechanische Computersimulationen von immer komplexeren Systemen mit bis zu 100.000 Atomen unter Ausnutzung der mehr als 1.800 parallel arbeitenden Einzelrechner möglich sein werden. Die Arbeitsgruppe von Prof. Gotthard Seifert arbeiten gegenwärtig daran, ihre Methoden und Software an die Möglichkeiten des neuen Supercomputers anzupassen. 15 Mitarbeiter, darunter sieben Doktoranden, befassen sich in der Arbeitsgruppe mit verschiedenen neuen Speichermaterialien auf der Grundlage der Kryoadsorption. Aber auch für andere Projekte der Arbeitsgruppe, etwa die Entwicklung neuer Schmierstoffe auf der Basis von Nanostrukturen, neue Membranmaterialien für Brennstoffzellen oder Bauelemente der Nanoelektronik, wird der Hochleistungsrechner des ZIH genutzt werden. Weitere Informationen: Prof. Dr. Gotthard Seifert, Technische Universität Dresden, Fachrichtung Chemie, Physikalische Chemie, Tel. 035146337637, Gotthard.Seifert@chemie.tu-dresden.de Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=274498
 
Branchennachricht
22.11.06

Polymere erobern das Auto - Textil, Kunststoff, Faserverbund für Funktion und Design

Der Fachkongress "Polymere im Automobilbau", im restlos ausgebuchten FIZ-Projekthaus der BMW AG in München führt 550 Teilnehmer aus Politik, Wirtschaft und Wissenschaft zusammen; zu einem Großteil aus Bayern, aber auch aus dem gesamten Bundesgebiet, aus zehn Ländern Europas sowie aus Kanada. Er ist ein erster Höhepunkt im Cluster Automotive mit der Eröffnungsrede von Bayerns Wirtschaftsminister Erwin Huber. Konzipiert wird der Kongress von der Bayern Innovativ GmbH, verantwortlich für den Cluster Automotive, in Zusammenarbeit mit der BMW AG. Die Automobilindustrie in Bayern Die Automobilindustrie ist eine der wichtigsten und innovationsstärksten Branchen in Bayern. Mit den Premium-Herstellern BMW und Audi sowie einem umfangreichen Netz hervorragender Zulieferer steht sie für rund 180.000 Arbeitsplätze, einem Umsatz von über 70 Mrd. Euro und einen Exportanteil von 61,5 Prozent. Diese hohe internationale Wettbewerbsfähigkeit beruht wesentlich auf höchster Effizienz und Qualität in der Produktion, vor allem aber auf kontinuierlich neuen, attraktiven und Kunden orientierten Entwicklungen im Automobil. Polymere im Fahrzeugbau werden immer bedeutender Einer der Innovationstreiber im Automobilbau sind neue Materialien. Hierzu zählen zunehmend Polymere wie Technische Textilien, Kunststoff und Faserverbund. Durch gezielte Entwicklung neuer Eigenschaften, kontinuierliche Verbesserung der Produktionstechniken sowie Transfer von Erfahrungen, z.B. aus der Luft- und Raumfahrt, finden sie verstärkten Einsatz im Fahrzeugbau. Hochwertige Haptik und Akustik im Innenraum, intelligenter Leichtbau oder schnittige Cabrio-Verdecke sind nur einige Beispiele. Im Exterieur stehen Funktion und Technik im Vordergrund wie hohe Energie-Absorption, um die Sicherheit im Falle eines Aufpralls zu erhöhen. Leichte Materialien mit hoher Steifigkeit und guten Verbindungseigenschaften sind dagegen essentiell, um mit optimierten Mischbauweisen das Gewicht und damit den Kraftstoffverbrauch der Fahrzeuge weiter zu reduzieren. Diese Werkstoffe eröffnen auch neue Möglichkeiten in Design und Gestaltung der Karosserie, bringen aber auch Kosteneffizienz für Bauteile im Motorraum. Wertigkeit und Emotion sind entscheidende Elemente im Fahrzeuginnenraum. Denn die empfundene Wertanmutung ist bedeutend für die Kaufentscheidung des Kunden. Neue Effekte in Optik, Haptik und Akustik stehen hier im Mittelpunkt, aber auch die kontinuierliche Verbesserung funktionaler Eigenschaften wie Schmutz abweisend, lichtbeständig, antistatisch oder atmungsaktiv. Zunehmende Bedeutung gewinnen nachwachsende Rohstoffe, z.B. für hochwertigen Faserverbund. Die Verbindung mit der Nanotechnologie wird weitere Materialeigenschaften ermöglichen. Cluster-Initiative "Allianz Bayern Innovativ" Vernetztes Arbeiten über Technologien und Branchen ist gefordert - vom Automobil über den Maschinenbau bis zur Luft- und Raumfahrt, von der Polymerchemie über die Kunststofftechnologie bis zur textilen Fertigungstechnik, von der Nanotechnologie über die Elektronik bis zur Simulation und Testung von Materialeigenschaften. Diese Form der Vernetzung ermöglicht besondere Wertschöpfung. Die in Bayern vorhandenen Kompetenzen in Firmen und Instituten bieten beste Voraussetzungen für hohe Innovationsdynamik, denn sie erlauben projektorientierte Zusammenarbeit unter Nutzung räumlicher Nähe. Diese Potenziale noch besser zu erschließen, ist zentrale Zielsetzung der Cluster-Initiative Allianz Bayern Innovativ unter Federführung von Wirtschaftsminister Erwin Huber. Im Rahmen der 19 etablierten Cluster haben Automotive als Produktionsorientierter Cluster und Neue Werkstoffe als Cluster einer Querschnitts¬technologie besondere Bedeutung. Top-Plenum Das Plenum spannt den Bogen für den Themenkreis dieses Innovationskongresses. Aktuelle Entwicklungen im Automobil mit Kunststoff und Faserverbund präsentiert Dr. Rudolf Stauber, Leiter Betriebsfestigkeit und Werkstoffe der BMW AG und einer der Sprecher des Clusters Neue Werkstoffe. Hierzu zählen die mit dem Innovation-Award der Society of Plastic Engineers ausgezeichnete Entwicklung der Strukturverstärkung in der Leichtbau-Karosserie des BMW X5, aber auch die Trends der kommenden Jahre. In neue textile Innenraumwelten und anmutendes Oberflächendesign entführt Kirsten Schönharting von Strähle + Hess. Preisgekrönt das Design für Porsche, viel beachtet die Ausgestaltung des Concept Cars ZaZen von Rinspeed, das mit den ausgewählten Materialien und Farbkompositionen Wärme und Entspanntheit ausstrahlt. Kommende Materialentwicklungen beschreibt Prof. Dr. Volker Warzelhan von der BASF. Der "coole" schwarze Lack mit Nanopartikeln, der Sonnenlicht reflektiert und damit ein Aufheizen des Fahrzeuges vermeidet, oder selbst heilende Lacke zur Eliminierung von Kratzern sind nur einige Beispiele. Besonders zu erwähnen ist das mit dem Philip-Morris-Forschungspreis ausgezeichnete neue Katalyseverfahren, mit dem komplett biologisch abbaubare Kunststoffe auf Basis der Petrochemie hergestellt werden können. Strategien und Aktivitäten im Cluster Automotive für weitere Innovationsdynamik durch eine noch intensivere Vernetzung auf regionaler Ebene, unter Nutzung nationaler und internationaler Chancen durch das etablierte Netzwerk BAIKA, erläutert Prof. Dr. Josef Nassauer, Geschäftsführer der Bayern Innovativ GmbH. "Die Kombination von Qualität in Funktion und Technik mit Wertigkeit und Emotion durch maßgeschneiderte Werkstoffe ist ein Wettbewerbsvorteil der deutschen Automobilindustrie, der durch eine enge Zusammenarbeit von Polymerchemie, Materialexperten, Maschinenherstellern, Verarbeitern und Anwendern noch weiter ausgebaut werden kann", so Prof. Nassauer Top-Referenten aus Wirtschaft und Wissenschaft Referenten kamen unter anderem aus folgenden Unternehmen: DaimlerChrysler AG, Fraunhofer-Institut IZM München, helsa-automotive GmbH & Co. KG, Krauss-Maffei Kunststofftechnik GmbH, Polytec Automotive GmbH & Co. KG und der Universität Stuttgart. Die Themenbereiche des Plenums werden in den Fachbeiträgen weiter vertieft. Neueste Entwicklungen mit Kunststoff und Faserverbund von DaimlerChrysler am Beispiel SLR McLaren oder dem Flugzeugbau mit Bezug zum Airbus A 380, das Innovationspotential der Polymerelektronik mit leitenden Kunststoffen, etwa für multifunktionale Bauelemente, OLED und polymeren Solarzellen für energie-autarke Elektronik, oder Neuerungen im Bereich Textilien durch die Integration von Elektronik z.B. innovatives Nachtdesign, textile Schaltflächen für die Sitzverstellung, Sensorwerkstoffe oder Nanofilter für hochreine Luft im Innenraum - dies sind nur einige Auszüge faszinierender Beispiele. Perspektiven von ESA und BMW im Abschluß-Plenum Spannend ist auch das gemeinsame Abschluss-Plenum mit einem Blick in die Zukunft. Materialforschung im Weltraum eröffnet neue Perspektiven für Hochleistungswerkstoffe. Dr. Reinhold Ewald, ESA Astronaut und Missionsbetriebsleiter für Astrolab, gibt Einblick in jüngste Entwicklungen mit Relevanz für die Industrie. Dr. Klaus Draeger, Vorstand Forschung, Entwicklung und Einkauf der BMW AG, skizziert aus Sicht eines führenden Herstellers Material-Trends und Perspektiven im Automobilbau. 550 Teilnehmer aus 11 Ländern Unter der fachlichen Leitung der Bayern Innovativ GmbH wurde dieser Kongress in Zusammenarbeit mit dem Verband der Bayerischen Textil- und Bekleidungsindustrie e.V., dem Quebecer Verband für Spezialfahrzeuge und Transport (AMETVS), dem Verband Deutscher Maschinen- und Anlagenbau Bayern (VDMA) sowie mit umfassender Unterstützung durch das Bayerische Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie organisiert. Der Kongress führt 550 global agierende Hersteller, international tätige Supplier, mittelständische Zulieferer, Materialexperten, innovative Newcomer und Quereinsteiger aus anderen Branchen sowie wissenschaftliche Institute zusammen. Teilnehmer aus Deutschland sowie aus elf weiteren Ländern wie Belgien, Frankreich, Großbritannien, Israel, Italien, Niederlande, Österreich, Polen, Schweiz, Slowenien, Tschechische Republik, Kanada machen diese Plattform zu einem internationalen Treffpunkt für das Wissen von Heute und die Impulse für Innovationen von Morgen. Die Teilnehmer kommen aus renommierten Unternehmen und Forschungseinrichtungen, darunter BMW, Audi, DaimlerChrysler, VW und vom führenden Flugzeughersteller EADS, von namhaften Automobilzulieferunternehmen wie Brose, Dräxlmaier, Faurecia, Johnson Controls, IM Kelly Automotive, Knorr Bremse, Leoni, Robert Bosch, Schreiner Group, sowie von Materialexperten wie BASF, DuPont, EMS-Chemie, GE Plastics, Huntsman, Jumbo Textil, Lauffenmühle, Rehau, Schott, SGL Carbon, W.L. Gore & Associates und Maschinen- und Werkzeughersteller wie Liba oder WAREMA; aus dem wissenschaftlichen Bereich vom Institut für Textil- und Verfahrenstechnik ITV Denkendorf, der Technischen Universitäten Dresden und München, der Fachhochschule München, dem Fraunhofer Institut IWM oder SGS Fresenius. Bayern -Quebec Eine Delegation von 15 Teilnehmern aus zehn Unternehmen und Institutionen aus der Region Quebec nutzt diesen Innovationskongress, um sich über neueste Trends zu informieren und gezielt Kooperationen für innovative polymere Materialien anzugehen und so neue Geschäftsmöglichkeiten in den Märkten Europa und Nordamerika zu erschließen. Dies ist ein weiteres Ergebnis der Kooperationserklärung der Bayern Innovativ GmbH und der Quebecer Association des Manufacturiers d`equipments de transport et de vehicules spèciaux (AMETVS), die im Jahr 2003 in Lindau zum Ausbau von Technologie orientierten Kooperationen zwischen Bayern und Quebec unterzeichnet wurde. Diese Kooperation ist Teil des seit 1989 bestehenden Rahmenabkommens zwischen den Regierungen von Bayern und Quebec hinsichtlich bilateraler Zusammenarbeit. Bayern Innovativ GmbH Die Bayern Innovativ GmbH wurde 1995 von der Bayerischen Staatsregierung initiiert und gemeinsam von Politik, Wirtschaft und Wissenschaft als Gesellschaft für Innovation und Wissenstransfer mit Sitz in Nürnberg gegründet. Zielsetzung ist die Initiierung von Innovationen in kleinen und mittleren Unternehmen durch den Ausbau von Kooperationen über Technologien und Branchen hinweg. Leitgedanke ist das Zusammenführen von verschiedenen Kompetenzen - auch außerhalb der herkömmlichen Wertschöpfungskette - um neuartige Entwicklungen mit hohem Innovationsgrad zu ermöglichen. Quelle: www.pressrelations.de
 
Branchennachricht
11.09.06

Vortrag zum Thema "Molekularküche - Physik und Chemie am Herd und zu Tisch"

Am 14. September 2006, 17.00 Uhr, findet am Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) ein öffentlicher Vortrag zum Thema "Molekularküche - Physik und Chemie am Herd und zu Tisch" statt. Referent ist Prof. Dr. Thomas A. Vilgis vom Max-Planck-Institut für Polymerforschung Mainz. Warum wird Eiweiß beim Schlagen eigentlich steif? Wieso verbinden sich bei einer Vinaigrette die "Urfeinde" Öl und Essig? Und bei welcher Temperatur brät man Steak am besten, damit es außen knusprig aber innen zart ist? Die Antworten darauf gibt mit Prof. Dr. Thomas Vilgis ein Physiker: Der "Molekulargastronom" berichtet in seinem Vortrag aus dem "Labor Küche" und erläutert dabei anschaulich die physikalisch-chemischen Vorgänge beim Kochen und Backen. Der Vortrag findet im Konferenzsaal des Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6,01069 Dresden (Nähe Hauptbahnhof) statt. Der Eintritt ist frei. Quelle: www.pressrelations.de
 
Branchennachricht
14.08.06

Bakterien stellen Nano-Cluster aus Edelmetall her

Die Nanotechnologie wird von Experten als die Schlüsseltechnologie des 21. Jahrhunderts bezeichnet. Winzigkleine Partikel - ein Nanometer entspricht einem Millionstel Millimeter - werden heute bereits eingesetzt im Automobilbau, in der Optik und Elektronik oder auch in Materialien für Medizin und Hygiene. Die Natur hat eigene Mechanismen auf der Nanometerskala entwickelt. Grundlegendes Wissen um diese natürlichen Prozesse kann zur Entwicklung neuer Nano-Materialien beitragen. Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt. Seine Eiweißhülle, im Fachjargon S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall. In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil. Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt. Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden. Die Biologen Dr. Katrin Pollmann, Dr. Mohamed Merroun, Dr. Johannes Raff, Dr. Sonja Selenska-Pobell und der Biophysiker Dr. habil. Karim Fahmy entschlüsselten vor kurzem mit unterschiedlichen Methoden den Mechanismus, wo und wie das Bakterium Edelmetalle in seiner schützenden Proteinhülle bindet. So charakterisierte Karim Fahmy mit Hilfe von Infrarotlicht die Natur der chemischen Gruppen, die die Metall-Protein-Wechselwirkung so stabil machen. Aufgrund dieser Ergebnisse und der bereits vollständig von der Gruppe entschlüsselten Struktur des S-Layers gelang es Johannes Raff, die Bausteine der Proteinhülle, die an der Metallbindung beteiligt sind, zu bestimmen. Mohamed Merroun und Dr. Christoph Hennig, ein weiterer Kollege des Teams, klärten mit Hilfe von Röntgenlicht an der Rossendorf Beamline der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble/Frankreich die atomare Umgebung des Palladiums in der biologischen Matrix. Die Forschungsergebnisse wurden in der Augustausgabe der Fachzeitschrift Biophysical Journal veröffentlicht (http://www.biophysj.org/) in dem Artikel von Karim Fahmy, Mohamed Merroun, Katrin Pollmann, Johannes Raff, Olesya Savchuk, Christoph Hennig, Sonja Selenska-Pobell: "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy". Wesentlich für den Erfolg dieser Arbeit war die zielgerichtete Integration sich ergänzender Forschungsmethoden von Biologie, Chemie, Physik und Spektroskopie. Insgesamt beschäftigen sich weltweit bisher nur wenige Forschergruppen mit den spezifischen Eigenschaften von bakteriellen S-Layern, einem neuen und vielversprechenden Forschungsfeld. Weitere Informationen: Dr. Sonja Selenska-Pobell, Dr. Johannes Raff, Dr. Katrin Pollmann Institut für Radiochemie Tel.: 03512602989 oder - 2951 oder - 2946 s.selenska-pobell@fz-rossendorf.de, j.raff@fz-rossendorf.de, k.pollmann@fz-rossendorf.de Dr. Karim Fahmy Institut für Strahlenphysik Die aktuelle Telefonnummer kann über die FZR-Pressestelle erfragt werden. Pressekontakt: Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit Forschungszentrum Rossendorf Tel.: 03512602450 oder 016096928856 Fax: 03512602700 c.bohnet@fz-rossendorf.de Postanschrift: Postfach 510119 ? 01314 Dresden Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden Information: Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie, o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006). Quelle: www.pressrelations.de
 
Branchennachricht
05.08.06

Kongress in Dresden: Nachhaltigkeit in der Chemie

Die Chemie bekennt sich zu nachhaltigem Handeln und macht das auf der 1st International IUPAC Conference on Green-Sustainable Chemistry deutlich. Dieser von der Internationalen Union für Reine und Angewandte Chemie (IUPAC), der Gesellschaft Deutscher Chemiker (GDCh) und dem Consorzio Interuniversitario Nazionale "La Chimica per l´Ambiente" (INCA) organisierte Kongress findet vom 10. bis 15. September 2006 in Dresden statt. Er wird gefördert von der Deutschen Bundesstiftung Umwelt und vom Bundesumweltministerium. In rund 120 Vorträgen und über 300 Postern wird über neue umweltfreundliche Syntheseverfahren und Prozesstechnologien in der Chemie, über die künftige nachhaltige Energieversorgung, über erneuerbare Rohstoffquellen und auch über die Ausbildung künftiger Chemiker in "grüner" Chemie berichtet. Der Kongress will möglichst alle chemischen Aspekte und Facetten des vorbeugenden Umweltschutzes behandeln, so Professor Dr. Wolfgang Hölderich, RWTH Aachen, der gemeinsam mit Professor Dr. Pietro Tundo, Universität Venedig, den wissenschaftlichen Vorsitz des Kongresses innehat. Außer Chemikern aus Hochschule und Industrie sollen auch andere Naturwissenschaftler und Ingenieure, Studenten und auch Politiker der Einladung nach Dresden folgen; man will hier insbesondere auf interdisziplinäre Synergismen aufmerksam machen. Die Plenar- und Hauptvorträge werden von international anerkannten Forschern und Industrievertretern gehalten. Die erwarteten 400 bis 500 Teilnehmer kommen aus allen Teilen der Welt. Bei den neuen umweltfreundlichen Synthesewegen steht die Katalyse im Mittelpunkt, und zwar sowohl die heterogene und homogene als auch die enzymatische Katalyse. Weitere Schwerpunkte werden alternative Lösungsmittel (z.B. ionische Flüssigkeiten), neue Reagenzien und die "End of pipe"-Technologien, z.B. die Behandlung von industriellen Abwässern, sein. Bei den neuen umweltfreundlichen Prozesstechnologien werden u.a. die Mikroreaktortechnik, die Mikrowellentechnologie, photochemische Prozesse und neue Bauteile für die Prozesssteuerung behandelt. Bei der künftigen nachhaltigen Energieversorgung geht es vor allem um die Wasserstofftechnologie, um Brennstoffzellen, Biodiesel und diverse Energiesparmaßnahmen, aber es wird auch die Kernfusion und die Solarenergienutzung angesprochen. Bei den erneuerbaren Rohstoffquellen liegt der Fokus auf Stärke, Cellulose und Zucker, neuen Detergentien und der Biomasse-Technologie, z.B. zur Gewinnung von Biotreibstoffen. Kontakt: Dr. Renate Hoer Gesellschaft Deutscher Chemiker Öffentlichkeitsarbeit Postfach 900440 60444 Frankfurt Tel.: 0697917493 Fax: 0697917307 E-Mail: r.hoer@gdch.de Quelle: www.pressrelations.de
 
Branchennachricht
06.06.06

Nanotechnologie: Chemiker sucht nach neuen Formen der Materie

Wenn man Menschen einsperrt, werden sie beginnen, sich ungewöhnlich zu verhalten. Bei Elektronen ist das nicht anders" sagt Michael Ruck, Professor für Anorganische Chemie an der Technischen Universität Dresden. Der Forscher beschäftigt sich mit der Entwicklung neuer Substanzen, in denen die Beweglichkeit von Elektronen so eingeschränkt wird, dass daraus spezielle Eigenschaften hinsichtlich Magnetismus oder elektrischer Leitfähigkeit der Stoffe resultieren. Das wiederum könnte eine extreme Miniaturisierung ermöglichen, wodurch stecknadelkopfkleine Handys oder Hochleistungsrechner im Hosentaschenformat denkbar sind. Denn was heute noch in hochkomplexen mikroelektronischen Systemen mit einer Vielzahl von Schaltelementen erreicht wird, könnte übermorgen von wenigen Bauteilen geleistet werden. Gegenwärtig müssen zum Beispiel Festplatten noch aus verschiedenen Bauteilen zusammengesetzt werden, um eine effektive Arbeitsweise zu erreichen. Wenn es gelingt Verbindungen herzustellen, die bereits in sich selbst strukturiert funktionale Eigenschaften haben, könnten Materialen und damit Zeit-, Geld- und Raumersparnisse in einem bisher nicht erreichten Umfang möglich werden. Der Fokus von Professor Rucks Grundlagenforschung liegt auf der Festkörperchemie im Bereich zwischen Metallen und Halbleitern. Dem Spielen mit einem Lego-Kasten ähnlich kombiniert der Wissenschaftler verschiedene Stoffe miteinander und untersucht die entstandenen Substanzen auf ihre Eigenschaften. Ziel ist die Entwicklung hochkomplexer und funktionstragender Materialien. Im Blickpunkt stehen vor allem die für die elektrische Leitfähigkeit verantwortlichen Elektronen. Diese können durch innere Energiebarrieren an ihrer freien Beweglichkeit gehindert bzw. in vorgegebene Bahnen gezwungen werden, was Magnetwiderstand oder richtungsabhängige Leitfähigkeit bewirken kann. Die Ergebnisse der Untersuchungen könnten vor allem im Bereich der Mikroelektronik Anwendung finden und werden auf Grund ihrer großen wissenschaftlichen Bedeutung von der internationalen Forscherwelt stetig verfolgt. "Wir können die Materie gestalten. Gelingt uns das in gewünschter Weise, wäre nicht nur eine Optimierung, sondern ein ganz neue Qualität in der Mikroelektronik möglich", so der Dresdner Chemiker. Weitere Informationen: Prof. Dr. Michael Ruck, Tel. 035146333244, E-Mail: michael.ruck@chemie.tu-dresden.de Quelle: www.pressrelations.de
 
Branchennachricht
20.04.06

Die Körpersprache von Biomolekülen

Woher weiß eine Zelle, dass sie sich teilen soll? Wie erhält ein Enzym die Botschaft, ein bestimmtes Gen zu aktivieren? In welcher Weise werden Signale aus der Umwelt ins Zellinnere weitergeleitet? Schalter im Miniformat sorgen dafür, dass alle diese Prozesse nach Plan ablaufen. Dabei verständigen sich die Biomoleküle, meistens Proteine, in einer besonderen Sprache: Über Änderungen ihrer Form - auch Konformation genannt - leiten sie Signale weiter oder blockieren eine Reaktion. Die geringfügigste Änderung ihrer räumlichen Struktur kann dabei verheerende Fehlschaltungen zur Folge haben. Wird beispielsweise ein Proteinschalter, der das Signal für Zellteilung gibt, in seiner Stellung 'An' festgehalten, werden sich die Zellen unkontrolliert teilen und es entsteht Krebs. Diesen grundlegenden und faszinierenden molekularen Prozessen in den Schaltmolekülen der Zellen widmet sich die VolkswagenStiftung in ihrer Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion', die 1998 ins Leben gerufen wurde. Für acht Vorhaben in dieser Initiative bewilligt die Stiftung jetzt rund 3,3 Millionen Euro: 1.) 429.000 Euro für das Vorhaben 'Information transmission pathways in an allosteric protein' von Professor Dr. Wolfgang Hillen und Professor Dr. Yves Muller vom Institut für Biologie der Universität Erlangen-Nürnberg und Professor Dr. Peter Gmeiner vom Institut für Pharmazie und Lebensmittelchemie, ebenfalls Universität Erlangen-Nürnberg; 2.) 787.700 Euro für das Vorhaben 'TGF-beta signalling biosensors' von Dr. Marcos González-Gaintán vom Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, Professor Dr. James Smith vom Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, und Dr. Carsten Schultz, Gene Expression Unit am Europäischen Laboratorium für Molekularbiologie in Heidelberg; 3.) 375.800 Euro für das Vorhaben 'Substrate Control of the active conformation of the respiratory complex I' von Professor Dr. Thorsten Friedrich und Professor Dr. Bernhard Breit vom Institut für Organische Chemie und Biochemie der Universität Freiburg sowie Professorin Dr. Petra Hellwig von der Faculté de Chimie, Université Louis Pasteur, Strasbourg. Nähere Informationen zu diesen Vorhaben finden Sie im Folgenden - außerdem im Anschluss eine Übersicht der weiteren bewilligten Projekte Zu 1: Interne Kommunikation von Proteinen Wie erfährt die rechte Hälfte, was die linke gerade tut? Viele Proteine besitzen mindestens zwei räumlich voneinander getrennte Bindestellen, an denen Substrate oder andere Moleküle andocken können. Bei diesen 'allosterischen' Proteinen wird in der Regel die Aktivität der einen Bindestelle vom Zustand der anderen gesteuert. Bindet also ein so genanntes Effektormolekül an der einen Seite, wird diese Information über Änderung der räumlichen Form an die andere Bindestelle weitergegeben. Das Resultat ist auch dort eine Konformationsänderung, die nun eine weitere Aktivität zulässt oder stoppen kann. Zwar hat man heute mit Kristallstrukturen bereits eine Reihe von Proteinen mit Substraten und Effektoren dreidimensional sichtbar machen können - doch Regeln für die Mechanik und Energetik proteininterner Kommunikation gibt es bisher nicht. Hier setzen die Wissenschaftler aus Erlangen-Nürnberg mit ihrem Projekt an: Am Beispiel des Tet-Repressors wollen sie die Informationsweitergabe analysieren und allgemein gültige Prinzipien herausfinden. Tetrazyklin ist als Antibiotikum bekannt, das die bakterielle Proteinsynthese hemmt. Es fungiert beim Tet-Repressor als Effektormolekül, reguliert über Bindung an den Repressor die Genexpression. Der Tet-Repressor ist strukturell sehr gut untersucht und bietet sich als Modell an. Die Wissenschaftler haben bereits Varianten des Rezeptors mit veränderter Allosterie sowie ein Peptid isoliert, das den Rezeptor durch eine andere Strukturänderung induziert als Tetrazyklin. Auch neuartige Tetrazyklinderivate werden getestet, um den Kontaktketten zwischen den Bindestellen auf die Spur zu kommen. Die Kombination von Molekulargenetik, Synthesechemie und strukturellen Methoden erhöht die Chancen, zu allgemein gültigen Prinzipien zu kommen. ------------------------------- Kontakte zu Projekt 1 Universität Erlangen-Nürnberg Institut für Biologie Lehrstuhl für Mikrobiologie Prof. Dr. Wolfgang Hillen Telefon: 091318528081 E-Mail: whillen@biologie.uni-erlangen.de Institut für Biologie Lehrstuhl für Biotechnik Prof. Dr. Yves Muller Telefon: 091318523081 E-Mail: ymuller@biologie.uni-erlangen.de Institut für Pharmazie und Lebensmittelchemie Prof. Dr. Peter Gmeiner Telefon: 091318522584 E-Mail: gmeiner@pharmazie.uni-erlangen.de ------------------------------------------ Zu 2: Biosensoren machen Signalketten sichtbar Nicht einzelne Signale, sondern komplexe Signalkaskaden sorgen dafür, dass sich ein Embryo entwickeln kann. Wichtige Signale geben dabei die Wachstumsfaktoren der Transforming Growth Factor beta-Familie, kurz TGF-?. Sie werden bereits intensiv erforscht, denn wenn ihre Signalfunktion im Zellwachstum außer Kontrolle gerät, können Krebs und andere Krankheiten entstehen. Während die molekularen Aspekte der Signalkette und die konformationellen Änderungen einzelner Komponenten schon recht gut bekannt sind, weiß man wenig über die zeitliche und räumliche Dynamik der Prozesse. Hierfür interessiert sich das Team aus Dresden, Heidelberg und Cambridge: Die Forscher wollen Biosensoren für verschiedene Komponenten der Signalkette 'bauen' und damit die Etappen der Signalweiterleitung in Echtzeit verfolgen. Biosensoren sind Messfühler, die mit biologischen Komponenten ausgestattet sind. Ihr Einsatz macht es möglich, Protein-Protein-Wechselwirkungen in der lebenden Zelle auch quantitativ zu bestimmen. Ziel der Forscher ist es vor allem, TGF-Signale sowohl während der Embyonalentwicklung als auch für bestimmte Krankheiten zu messen. ------------------------------------------------------------- Kontakte zu Projekt 2 Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden Dr. Marcos González-Gaitán Telefon:03512102539 E-Mail: gonzalez@mpi-cbg.de University of Cambridge Prof. Dr. James Smith Telefon: 00441223334133 E-Mail: j.bate@gurdon.cam.ac.uk Europäisches Laboratorium für Molekularbiologie, Heidelberg Dr. Carsten Schultz Telefon: 06221387210 E-Mail: carsten.schultz@EMBL-Heidelberg.de ------------------------------------------ Zu 3: Energiegewinn durch räumliche Bewegungen Auch bei der Energiegewinnung von Zellen spielen Konformationsänderungen von Molekülen und Molekülkomplexen die entscheidende Rolle. In der Atmungskette - dem entscheidenden Prozess im Energiestoffwechsel - wird ATP bereitgestellt, die universelle Energiewährung, die alles antreibt. Der erste Komplex der Zellatmung ist die NADH:Ubichinon-Oxidoreduktase, ein Enzym, das eine wichtige Schaltstelle darstellt: Es überträgt Elektronen vom Elektronencarrier NADH auf Ubichinon und nutzt die dabei freiwerdende Energie, um Protonen von der Innenseite der Membran nach außen zu transportieren. Auf diese Weise entsteht ein Membranpotenzial, das zum Aufbau des Energieträgers ATP, aber auch für Transportvorgänge und andere energieabhängige Vorgänge genutzt werden kann. Der Mechanismus dieses wichtigen Enzymkomplexes am Beginn der Atmungskette ist noch weitgehend unverstanden. Klar ist, dass die Bindung von NADH, nicht jedoch von NADPH - der phosphorylierten Form - große räumliche Bewegungen auslöst und das Molekül für Ubichinon öffnet. Die Wissenschaftler aus Freiburg und Strasbourg wollen in dem von der VolkswagenStiftung geförderten Vorhaben untersuchen, welche Konformationsänderungen abgewandelte NADH-Derivate zur Folge haben. Die Untersuchungen an der NADH:Ubichinon-Oxidoreduktase sind auch für die Medizin relevant, denn eine Fehlfunktion dieses Komplexes ist mit neurodegenerativen Krankheiten wie dem Parkinson-Syndrom verknüpft. -------------------------------------- Kontakte zu Projekt 3: Universität Freiburg Institut für Organische Chemie und Biochemie Prof. Dr. Thorsten Friedrich Telefon: 07612036060 E-Mail: tfriedri@uni-freiburg.de Prof. Dr. Bernhard Breit Telefon: 07612036051 E-Mail: bernhard.breit@orgmail.chemie.uni-freiburg.de Université Louis Pasteur, Strasbourg Prof. Dr. Petra Hellwig E-Mail: hellwig@chimie.u-strasbg.fr -------------------------------------- Bewilligt wurden in der Initiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' auch folgende fünf Vorhaben: 4.) 461.800 Euro für das Vorhaben 'Synthetic selectivity filters for porin-like ion channels' von Professor Dr. Ulrich Koert, Professor Lars-Oliver Essen und Dr. Henning Mootz vom Fachbereich Chemie der Universität Marburg; Kontakt zu Projekt 4: Universität Marburg Fachbereich Chemie Professor Dr. Ulrich Koert Telefon: 064212826970 E-Mail: koert@chemie.uni-marburg.de ----------------------------------- 5.) 79.400 Euro für das Vorhaben 'Conformation-activity relationship of the archazolids: Development of a novel class of highly potent V-ATPase inhibitors' von Dr. Dirk Menche von der Abteilung Medizinische Chemie der Gesellschaft für Biotechnologische Forschung in Braunschweig (GBF) und Dr. Teresa Carlomgno vom Max-Planck-Institut für biophysikalische Chemie in Göttingen; Kontakt zu Projekt 5: GBF Braunschweig Abteilung Med. Chemie Dr. Dirk Menche Telefon: 05316181346 E-Mail: dirk.menche@gbf.de ---------------------------------- 6.) 359.000 Euro für das Vorhaben 'Elucidation of the conformational dynamics of the spliceosome using small molecule inhibitors' von Professor Dr. Reinhard Lührmann und Privatdozent Dr. Markus Wahl von der Abteilung Zelluläre Biochemie am Max-Planck-Institut für biophysikalische Chemie in Göttingen und Professor Dr. Herbert Waldmann vom Fachbereich Chemie, Chemische Biologie, Universität Dortmund; Kontakt zu Projekt 6: Max-Planck-Institut für biophysikalische Chemie Abt. Zelluläre Biochemie Prof. Dr. Reinhard Lührmann Telefon: 05512011405 E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de ------------------------------------------ 7.) 398.800 Euro für die Fortsetzung des Vorhabens 'Pleckstring domains: from allosteric regulation of protein function towards novel tools for monitoring intracellular reactions' von Dr. Carsten Schultz und Dr. Michael Sattler, beide EMBL - Europäisches Laboratorium für Molekularbiologie in Heidelberg, und Professor Dr. Mathias Gautel, Cardiovascular Division der GKT School of Medicine, King's College, London; Kontakt zu Projekt 7: EMBL, Heidelberg Dr. Michael Sattler Telefon: 06221387552 E-Mail: sattler@embl-heidelberg.de ----------------------------------- 8.) 393.100 Euro für die Fortsetzung des Vorhabens 'Modulation of the slow conformational dynamics in Ras and Ras-related proteins by drugs: development of an new type of specific Ras-inhibitor' von Professor Dr. Hans-Robert Kalbitzer vom Institut für Biophysik und physikalische Biochemie sowie Professor Dr. Burkhard König vom Institut für Organische Chemie, beide Universität Regensburg, und Professor Dr. Christian Herrmann von der Fakultät für Chemie, Physikalische Chemie, Universität Bochum. Kontakt zu Projekt 8: Universität Regensburg Institut für Biophysik und physikalische Biochemie Prof. Dr. Hans-Robert Kalbitzer Telefon: 09419432595 E-Mail: hans-robert.kalbitzer@biologie.uni-regensburg.de -------------------------------------------------------- Die Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' wird in diesem Jahr eingestellt. Sie hat dazu beigetragen, das Gebiet der Chemischen Biologie in Forschung und Lehre in der deutschen wie europäischen Forschungslandschaft zu verankern. Über die gesamte bisherige Laufzeit wurden - einschließlich der jetzigen Vorhaben - 125 Bewilligungen ausgesprochen, für die rund 23 Millionen Euro bereit gestellt wurden. Mit Stichtag 15. September 2006 können die letzten Anträge eingereicht werden. Kontakt VolkswagenStiftung Presse- und Öffentlichkeitsarbeit Dr. Christian Jung Telefon: 05118381380 E-Mail: jung@volkswagenstiftung.de Kontakt Förderinitiative der VolkswagenStiftung Dr. Matthias Nöllenburg Telefon: 05118381290 E-Mail: noellenburg@volkswagenstiftung.de
 
Stellenanzeigen / Jobs
 
 
 
 
Allgemeine Anzeigen
 
 
 
 
 »  Stellen auf den Kanarischen Inseln
 »  Chemikalien für die eigene Firma
 »  3D-Drucker in der chemischen Industrie
 »  Faehigkeiten, die ein Chemiker haben sollte
Industrie:  
Automotive - Jobs in der Automotive-Industrie
  |  
Automobil - Jobs in der Automobil-Industrie
  |  
Druck - Markt der Druckindustrie
  |  
Elektronik - Jobs in der Elektronik-Industrie
  |  
Holz - Handel Jobs in der Holz-Industrie
  |  
Solar - Jobs in der Solar-Industrie
  |  
Verpackung - Jobs in der Verpackungs-Industrie
  |  
Werkzeug- und- Formenbau - Werkzeugbau-Stellenangebote
  |  
Dienstleistungen:  
Immobilien - mieten kaufen wohnen - Makler
  |  
Natur - Heilung und Jobs und Therapie
  |  
Personal - Management und Personal-Arbeit
  |  
Transporteur - Umzug-Hilfe
  |  
Übersetzen - Text deutsch uebersetzen
  |  
Versicherung - Arbeit im Versicherungsmarkt
  |  
Tourismus und Freizeit:  
Jobs auf Gran Canaria
  |  
Reise - Buro und Reise Jobs
  |