14 Treffer mit dem Suchbegriff |
Standard-Firmeneintrag
40667 Meerbusch
nir-support Roland Winzen nir-support bietet herstellerunabhängige Beratung, Schulung und Applikationsentwicklung im Bereich der NIR-Spektroskopie (Nahinfrarot-Spektroskopie, NIRS) mit chemometrischer Auswertung.
NIR-Spektroskopie (Nahinfrarot-Spektroskopie, kurz NIR oder NIRS) ist die universale Zukuntfstechnik in der Qualitätssicherung, Prozeßanalytik, Wareneingangskontrolle (Rohstoff-Identifizierung) und überall dort, wo größere Probenmengen (auch zerstörungsfrei) schnell analysiert werden müssen. NIR ist schneller, preiswerter und besser automatisierbar als vergleichbare analytische Methoden in Labor und Betrieb. Mit über 20 Jahren Erfahrung unterstützt Sie der nir-support durch Machbarkeitsstudien, Applikationsberatung, Kalibrierservices, Methodenentwicklung, Schulungen für Anfänger und Fortgeschrittene und erarbeitet für Sie komplette Lösungen, die Ihre analytische Aufgabe effektiv mit Hilfe der NIR-Spektroskopie umsetzen. Kontaktieren Sie den nir-support für eine kostenlose und unverbindliche Anfangsberatung! http://www.nir-support.com/ Region: Nordrhein-Westfalen http:// www.nir-support.com/ Ort: Meerbusch Straße: Brühler Weg 57 Tel.: +49 (0)21321376961 Fax: +49 (0)21321376963 E-Mail: informationen@nir-support.com
Standard-Firmeneintrag
45327 Essen
nir-concept GmbH Die nir-concept GmbH bietet als Komplettdienstleister in der Nahinfrarot-Spektroskopie Nir-Beratung und Nir-Anwendungen an.
Die nir-concept GmbH ist als Komplettdienstleister in der Nahinfrarot-Spektroskopie - kurz NIR-Spektroskopie - tätig. Wir begleiten Sie und setzen auf Grundlage unseres NIR-Wissens verschiedene NIR-Anwendungen um. nir-concept kombiniert kompetente NIR-Dienstleistungen mit optimalen Spektrometersystemen zu einer kundenspezifischen Gesamtlösung. Das Team von nir-concept greift auf umfassende Fachkenntnisse der NIR-Spektroskopie sowie auf eine langjährige industrielle Erfahrung in der Labor- und Prozessanalytik zurück. Region: Nordrhein-Westfalen http:// www.nir-concept.de Ort: Essen Straße: Katernberger Str. 107 Tel.: +49 (0)2018485020 Fax: +49 (0)2018485021 E-Mail: submit@nir-concept.de
Standard-Firmeneintrag
73061 Ebersbach
Grip-Pack Verpackungsservice GmbH Hersteller von Verpackungen aus Polyethylen und Polypropylen speziell im Bereich Beutel mit Wiederverschluss oder div. Adhäsionsklebebändern versehen.
Hersteller von Polyethylen Wiederverschlussbeuteln, Druckverschlussbeuteln, Doppelbeutel für Labors, Känguruhbeutel, Labortüten, AST-Beutel etc. in allen größen und stärken sowohl bedruckt als auch unbedruckt. Textil und Lebensmittelverpackungen aus Polypropylen gehören ebenfalls zu unserem Herstellungsprogramm. Da wir in Europa Produzieren können wir unseren Kunden sehr kurze Lieferzeiten und den ganzen Service von der Druckgestaltung bis zur Auslieferung aus einer Hand anbieten. Region: Baden-Württemberg http:// www.grip-pack.de Ort: Ebersbach Straße: Hauptstraße 112 Tel.: 00497163534970 Fax: 00497163534971 E-Mail: info@grip-pack.de
Branchennachricht
20.05.08
HighChem-Broschüre zu Farben und Lacken Eine Welt ohne Farben und Lacke ist undenkbar. Fast alles, was der Mensch herstellt, wird heute lackiert oder angestrichen: Häuser, innen und außen, Möbel und Einrichtungsgegenstände, Fahrzeuge aller Art, Druckerzeugnisse, Kunststoffverpackungen und vieles mehr. Kaum einer hat zur Kenntnis genommen, dass die guten alten Anstrichstoffe von HighTech-Lacken - man sollte eher HighChem-Lacken sagen - verdrängt wurden. Eigentlich sollte jeder wissen, was das ist, das man im Do-it-yourself-Verfahren verstreicht oder was das Auto so richtig schick aussehen lässt. Jetzt ist es ganz einfach, sich in die Welt der Farben und Lacke einzulesen: mit "HighChem hautnah - Aktuelles zur Chemie der Farben und Lacke", erschienen bei der Gesellschaft Deutscher Chemiker (GDCh) in Frankfurt, die diese Broschüre (ebenso wie das Deutsche Lackinstitut in Frankfurt) an Interessierte kostenlos abgibt. Die Broschüre basiert auf dem Internet-Auftritt www.aktuelle-wochenschau.de, mit dem die GDCh seit 2005, in jedem Jahr mit einem anderen thematischen Schwerpunkt, Oberstufenschüler, Lehrer, Studenten, Wissenschaftsjournalisten, Naturwissenschaftler, Ingenieure und Techniker - kurz: jeden Interessierten - über Aktuelles aus der Chemie informiert. 2007 hat die GDCh-Fachgruppe Lackchemie bei der Aktuellen Wochenschau Regie geführt und Woche für Woche auf die Fragen "Was ist drin im Lack?", "Wie kommt Farbe in den Lack?", Wie wird heute lackiert?", "Wie sehen moderne Lacksysteme aus?", "Was ist neu bei aktuellen Lack-Innovationen und wie wird in Zukunft lackiert?", "Was zeichnet Lacke für besondere Aufgaben aus?" und "Wie wird die Qualität der Lacke getestet?" verständliche Antworten gefunden. Die im Mai 2008 daraus hervorgegangene Broschüre beinhaltet alle Wochen, sprich: Kapitel, der Wochenschau, jedoch in gekürzter und didaktisch aufbereiteter Form. Mühelos kann man sich auf 115 Seiten mit den Grundlagen der Chemie der Lacke und Farben vertraut machen und sich anhand typischer Anwendungen die große Spannbreite ihrer Einsatzgebiete vor Augen führen. Dabei wird auch auf Gesundheits- und Umweltschutzaspekte eingegangen. Wem die gedruckte Version zu kurz geraten ist, der kann auf einer der Broschüre beigefügten CD die Langfassungen der Kapitel mit deutlich mehr Abbildungen einsehen. Professor Dr. Thomas Brock, der Vorsitzende der GDCh-Fachgruppe Lackchemie, empfiehlt die Broschüre insbesondere für Schule und Studium: "In Chemieunterricht und Studium werden Lacke und Farben oftmals nur am Rande oder überhaupt nicht erarbeitet. Die Beschäftigung mit diesem Themenkreis bietet aber die Möglichkeit, eine ganze Reihe gängiger chemischer Inhalte mit der Alltagswelt zu verknüpfen." Die Broschüre ist kostenlos erhältlich bei der Gesellschaft Deutscher Chemiker, Tel. 0697917330, E-Mail: pr@gdch.de. Die Gesellschaft Deutscher Chemiker (GDCh) ist mit über 28.000 Mitgliedern eine der größten chemiewissenschaftlichen Gesellschaften weltweit. Eines ihrer Anliegen ist es, die moderne Chemie auch dem Laien verständlich zu machen und ihm damit Zusammenhänge in Naturwissenschaften und Technik zu erschließen. Dieses Ziel will sie u.a. mit der Aktuellen Wochenschau und den HighChem-Broschüren erreichen, die neben der Chemie der Farben und Lacke seit 2005 auch die Analytische Chemie und die Elektrochemie als Schwerpunktthemen behandeln. 2008 stellt die Aktuelle Wochenschau zukunftsweisende Themen zur Nachhaltigen Chemie vor. Kontakt: Dr. Renate Hoer Gesellschaft Deutscher Chemiker e.V. (GDCh) Öffentlichkeitsarbeit Postfach 900440 60444 Frankfurt Tel.: 0697917493 Fax: 0697917307 E-Mail: r.hoer@gdch.de www.gdch.de Frankfurt am Main - Veröffentlicht von pressrelations Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=324195
Branchennachricht
23.04.08
BASF erwartet über 7.000 Aktionäre zur Hauptversammlung Die diesjährige Hauptversammlung der BASF am Donnerstag, 24. April, ist die erste in der neuen Rechtsform der Europäischen Gesellschaft (SE). Über 7.000 Aktionäre werden ab 10 Uhr im Congress Center Rosengarten in Mannheim erwartet. Dort wird der BASF-Vorstandsvorsitzende Dr. Jürgen Hambrecht die Ergebnisse des Rekordjahres 2007, und die Zahlen für das erste Quartal 2008 präsentieren. Klimaschutz und Energieeffizienz stehen im Mittelpunkt Wie in den vergangenen Jahren findet die Veranstaltung im Mannheimer Congress Centrum Rosengarten statt. Dort präsentiert die BASF aktuelle Informationen und zahlreiche innovative Ideen. Klimaschutz und Energieeffizienz sind zentrale Themen für die BASF. Daher wird die CO2-Bilanz der BASF ausführlich vorgestellt. Diese belegt, dass Produkte der BASF dreimal mehr Treibhausgasemissionen einsparen können, als bei der Herstellung und Entsorgung aller BASF-Produkte emittiert werden. Eines dieser innovativen Produkte ist der mit dem Ökoeffizienz-Siegel ausgezeichnete Kunststoff Ultradur® High Speed. Diesem Werkstoff werden organische Nanopartikel beigemischt, wodurch sich bei der Verarbeitung 20 Prozent Energie einsparen lässt. Ein Highlight der Ausstellung im Rosengarten ist der aus Ultradur High Speed gefertigte Stuhl „Myto“ des vielfach ausgezeichneten Stardesigners Konstantin Grcic 700 Mitarbeiter sorgen für einen reibungslosen Ablauf Auch wenn die Hauptversammlung nur eine Reihe von Stunden dauert, die Vorbereitungen beginnen bereits lange im Voraus. Zurzeit sind über 100 Mitarbeiter nahezu rund um die Uhr im Einsatz. Sie errichten im Mozartsaal, dem Hauptsaal des Rosengartens, eine 120 Quadratmeter große Bühne für Vorstand und Aufsichtsrat, sorgen für die Bestuhlung, installieren Computer und Telefonanlagen und richten die Scheinwerfer ein. Am Tag der Hauptversammlung sorgen knapp 700 interne und externe Mitarbeiter für einen reibungslosen Ablauf. Die Bewirtung der Aktionäre übernehmen die Köche und das Servicepersonal des Dorint-Hotels. Von süß bis herzhaft wird für jeden Geschmack etwas geboten. Während der Hauptversammlung filmen drei Kameras das Geschehen auf der Bühne. Dank einer gut 80 Quadratmeter großen Leinwand haben auch die Aktionäre in den hintersten Reihen eine gute Sicht auf Vorstand und Aufsichtsrat. Außerdem werden Bilder in sämtliche Säle und Foyers des Congress Centers übertragen. Über eine ausgefeilte Lautsprecheranlage können die Reden, Fragen und Antworten überall im Congress Center verfolgt werden. High-Tech hinter den Kulissen Hinter den Kulissen laufen sämtliche Fäden an einem zentralen Regieplatz zusammen. Wie bei einer Fernsehsendung koordiniert ein Regisseur die Kameraleute und entscheidet darüber, welche Einstellung gesendet wird. Von hier aus werden auch die Bilder für die Internetübertragung gesendet. User auf der ganzen Welt können so die Rede des Vorstandvorsitzenden Hambrecht live mitverfolgen. Die BASF hat ein besonderes Interesse daran, dass die Aktionäre ihr Stimmrecht ausüben und über alle Tagesordnungspunkte abstimmen. Daher bietet die BASF ihren Anteilseignern dieses Jahr erneut die Möglichkeit, Vollmacht und Weisungen an die von der Gesellschaft benannten Stimmrechtsvertreter per Internet zu erteilen. Dafür reicht eine kurze Registrierung auf der BASF-Homepage. Mehr Informationen hierzu und zu weiteren Fragen rund um die Hauptversammlung gibt es unter www.basf.de/hauptversammlung. Besichtigung des Besucherzentrums Auch während der diesjährigen Hauptversammlung haben die Aktionäre die Gelegenheit, sich im Besucherzentrum der BASF über die aktuellen Aktivitäten der BASF zu informieren. Ab 11 Uhr pendeln Busse zwischen Congress Center und Besucherzentrum. Im Anschluss an die Besichtigung besteht die Möglichkeit einer Werkrundfahrt über das größte zusammenhängende Chemieareal der Welt. Damit die Aktionäre schnell und bequem zur Hauptversammlung finden, hält die Internetseite der BASF eine Anfahrtsskizze bereit. Kostenfreie Parkplätze stehen in der Tiefgarage des Congress Centers sowie in der Tiefgarage am Wasserturm zur Verfügung. Da sich das Congress Center in der von der Stadt Mannheim festgelegten Umweltzone befindet, ist die Anfahrt ausschließlich mit einer Umweltplakette möglich. Damit die Aktionäre nicht lange nach einem der begrenzten Parkplätze in den beiden Tiefgaragen suchen müssen, bietet die BASF einen kostenfreien Park & Ride Service an. Vom Parkhaus in der Karl-Müller-Straße in Ludwigshafen und vom Parkplatz am Landesmuseum für Technik und Arbeit in Mannheim fahren ab 7:30 Uhr Pendelbusse zum Congress Center Rosengarten. Für Anreisende per Bahn werden ab 7:30 Uhr Pendelbusse vom Hauptbahnhof Mannheim zum Rosengarten eingesetzt. Die Pendelbusse verkehren bis zum Ende der Hauptversammlung. URL: www.basf.de Ludwigshafen - Veröffentlicht von pressrelations Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=320650
Branchennachricht
10.08.07
Wissenschaftsforum Chemie 2007: Harvard-Chemiker und Baeyer-Preisträger setzen erste Akzente Zwei Höhepunkte der Eröffnungsveranstaltung zum Wissenschaftsforum 2007 der Gesellschaft Deutscher Chemiker (GDCh) in Neu-Ulm am 16. September sind die Verleihung der Adolf-von-Baeyer-Denkmünze an Professor Dr. Wolfram Sander von der Ruhruniversität Bochum und die Auszeichnung von Professor George M. Whitesides (Harvard University) mit der August-Wilhelm-von-Hofmann-Vorlesung, in der Whitesides zum Thema "Rethinking What Chemistry Does" den Teilnehmern Nachdenkliches auf den Weg durch die bis zum 19. September an der Ulmer Universität stattfindenden Tagung gibt. "Ich halte George Whitesides für einen der brilliantesten Denker in der Chemie", freut sich GDCh-Präsident Professor Dr. Dieter Jahn, der das Wissenschaftsforum eröffnen wird, auf diesen Vortrag. "Whitesides gehört zu den Chemikern, die es verstehen, der Allgemeinheit klar zu machen, wie wichtig und nützlich viele der Entdeckungen aus den Chemielabors sind." Warum für ihn denn die Chemie so zentral für die Energiefrage sei, wurde Whitesides kürzlich in einem Interview gefragt. Seine einfache Antwort war, dass von der Verbrennung von Öl über die Batterie bis zur Solarzelle chemische Vorgänge und neue Materialien im Zentrum stünden. Heute gehe es aber nicht nur darum, Energie zu erzeugen. Wegen der Klima- und Rohstoffprobleme gehe es um existentielle Fragen für das Leben auf der Erde, antwortete Whitesides. "Wir können als Lösung nicht einen Mix aus bisher bekannten Technologien anbieten. Wir müssen neue Ideen haben - und zwar nicht nur in der Ingenieurtechnik." Die Nutzung der Sonnenenergie in der Photosynthese der Pflanzen sei trotz allen Enthusiasmus der Wissenschaftler noch nicht ausreichend verstanden, um daraus derzeit technische Prozesse mit hoher Effizienz abzuleiten. Hier gäbe es noch ein weites Feld für Chemiker mit vielen neuen Ideen. Große Probleme gibt es, laut Whitesides, auch beim Biosprit - nicht nur weil schrumpfende Flächen für Nahrungsmittel-Grundstoffe die Preise für Lebensmittel erhöhen. Die Prozesskosten von der Ernte der "Energiepflanzen" bis hin zum nutzbaren Energieträger sind derzeit noch immens - die Ausbeute, wie der Chemiker das Verhältnis vom eingesetzten Rohstoff zum Endprodukt nennt, erschreckend niedrig. Zu berücksichtigen ist auch, dass es regionale und saisonale Unterschiede gibt, und es stellt sich die Frage, wie die Energieverteilung sinnvoll möglich wird - nur dezentral? Die richtigen Strategien für die Energieversorgung der Zukunft werden Zeit brauchen sowie hervorragende Naturwissenschaftler und Ingenieure. Hier sind auch die Chemiker gefragt, deren Grundlagenforschung auf den ersten Blick den "Nichtchemikern" unbedeutsam erscheint. Wolfram Sander gehört zu den Forschern, deren Grundlagenarbeit von der Kommission der GDCh für die Vergabe der Adolf-von-Baeyer-Denkmünze als sehr wichtig eingestuft wurde. Baeyer, Nobelpreisträger von 1905 u.a. für seine Synthesen des heute noch populären Farbstoffs Indigo und anderer wichtiger Farbstoffe, war ein exzellenter Forscher auf dem Gebiet der organischen Chemie. Der Organiker Sander befasst sich heute mit ganz anderen Fragestellungen, nämlich mit der Aktivierung und den Reaktionen von molekularem Sauerstoff, mit Carbokationen und elektrophilen Carbenen, mit Polyradikalen, reaktiven Silicium-Spezies sowie nichtkovalenten Reaktionen. Ziel seiner Arbeiten ist es, Strukturen und Eigenschaften neuer Produkte chemischer Synthesen und auch den Ablauf dieser Synthesen vorauszusagen. Von besonderer Bedeutung sind dabei die möglichen Zwischenstufen solcher Reaktionen. Dazu hat er mit seinem Arbeitskreis wichtige hochreaktive Zwischenstufen hergestellt: das Phenyl-Kation, verschiedene Dehydroaromaten sowie neue Carbene und Nitrene. Sanders wendet modernste spektroskopische Messtechniken und quantenchemische Berechnungen an, auf die die Chemiker vor einhundert Jahren noch nicht zurückgreifen konnten. Ein interessantes Teilgebiet seiner Arbeiten sind nichtkovalente, "lockere", Wechselwirkungen, die u.a. von großer Bedeutung sind, um das Verhalten der Bausteine des Lebens, der Aminosäuren, Peptide und Proteine, also die Lebensprozesse, zu verstehen. Proteine ändern fortwährend ihre Struktur oder sie binden an andere Stoffe, um diese beispielsweise zu anderen Bestimmungsorten zu transportieren. Diese Veränderungen gehen unvorstellbar schnell vor sich und sind nur möglich, weil die kurzfristigen Bindungen nichtkovalent, also nur wenig stabil, sind. Solche schwachen Wechselwirkungen zwischen Molekülen bestimmen auch die Strukturen anderer flüssiger wie fester Materie. Mit der Erforschung nichtkovalenter Wechselwirkungen arbeitet Sander an der Schnittstelle zwischen Chemie, Biochemie und Materialwissenschaften. Sander, der in seiner Heimatstadt Heidelberg Chemie studierte und dort auch, nach einem Postdoc-Aufenthalt an der University of California, habilitierte, erhielt nach einer Professur an der Universität Braunschweig 1993 den Ruf auf den Lehrstuhl für Organische Chemie an der Universität Bochum. Die Gesellschaft Deutscher Chemiker (GDCh) gehört mit über 27.000 Mitgliedern zu den größten chemiewissenschaftlichen Gesellschaften weltweit. Alle zwei Jahre veranstaltet sie an wechselnden Orten in Deutschland ihre Jahrestagungen, 2007 erstmals unter dem Titel Wissenschaftsforum und erstmals an der Ulmer Universität. Wie auf allen Jahrestagungen werden auch auf dem Wissenschaftsforum 2007 von der GDCh zahlreiche Ehrungen vorgenommen und Preise verliehen. Die August-Wilhelm-von-Hofmann-Denkmünze, eine Goldmedaille, wird seit 1903 - damals von der Deutschen Chemischen Gesellschaft, eine der beiden Vorgängerorganisationen der GDCh - vorwiegend an ausländische Chemikerinnen und Chemiker verliehen, in diesem Jahr zum 43. Mal. Die Adolf-von-Baeyer-Denkmünze, ebenfalls eine Goldmedaille, verbunden mit einem Preisgeld von zZt. 7.500 Euro, wird in Ulm zum 46. Mal seit 1911 - damals vom Verein Deutscher Chemiker - vergeben. Kontakt: Dr. Renate Hoer Gesellschaft Deutscher Chemiker e.V. (GDCh) Öffentlichkeitsarbeit Postfach 900440 60444 Frankfurt Tel.: 0697917493 Fax: 0697917307 E-Mail: r.hoer@gdch.de www.gdch.de Frankfurt am Main - Veröffentlicht von pressrelations Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=291590
Branchennachricht
18.10.06
Buch über Superfrauen aus der Wissenschaft Wiesbaden (biografien-news) – Es ist sehr beeindruckend, welche bedeutenden Leistungen tüchtige und kluge Frauen in Wissenschaft und Technik vollbracht haben. Allen voran natürlich Marie Curie: Sie begründete die Radiochemie und den medizinischen Einsatz von Röntgenstahlen und erhielt als erste Frau zwei Nobelpreise, einen für Physik und einen für Chemie. Ihre Tochter Irène Joliot Curie entdeckte die künstliche Radioaktivität und bekam den Nobelpreis für Chemie. Das Taschenbuch „Superfrauen 5 – Wissenschaft“ (ISBN 3935718144, 16 Euro) des Wiesbadener Wissenschaftsautors Ernst Probst will die großen Leistungen, die Frauen in Wissenschaft und Technik zuzuschreiben sind, mehr in das Bewusstsein der Öffentlichkeit rücken. Es präsentiert 41 Lebensläufe in Wort und Bild sowie zahlreiche weitere kurze Hinweise auf verdienstvolle Forscherinnen. Es schildert, wie mühsam sich tapfere Frauen einen Platz in der Wissenschaftsgeschichte erkämpften. Die Reihe „Superfrauen“ umfasst insgesamt 14 Titel. Sie ist auch elektronisch unter dem Titel „Superfrauen: 14 Bücher auf einer CD-ROM“ (ISBN 3935718829, 2278 Seiten, 18 Euro) erhältlich. Weitere Fakten: Dian Fossey, Biruté Galdikas und Jane Goodall entwickelten sich zu den berühmtesten Menschenaffen-Forscherinnen der Welt. Anna Freud gilt als führende Psychoanalytikerin und Begründerin der Kinderpsychologie. Maria Goeppert-Mayer löste das Rätsel der „magischen Zahlen“. Caroline Herschel entdeckte bei der Beobachtung des Nachthimmels etliche Kometen und Nebel. Shere Hite machte sich weltweit als Sexualforscherin und Feministin einen Namen. Sofja Kowalewskaja gelangte als Pionierin der Mathematik zum Ruhm. Elisabeth Kübler-Ross wurde die berühmteste Sterbeforscherin und linderte die Furcht vor dem Tod. Mary Leakey wandelte als erfolgreichste Anthropologin der Welt auf den Spuren der Vormenschen in Afrika. Rita Levi-Montalcini leistete als Embryologin Pionierarbeit in der Nervenforschung, für die sie mit dem Nobelpreis belohnt wurde. Ada Countess oft Lovelace entwarf Programme für die ersten Rechenmaschinen mit Programmsteuerung und gilt deswegen als Computer-Pionierin und erste Programmiererin. Barbara McClintock war die bedeutendste Genetikerin der Welt und ging als „Genie der Genetik“ in die Wissenschaftsgeschichte ein. Lise Meitner, eine der erfolgreichsten Atomphysikerinnen der Welt, erklärte die Uranspaltung. Christine Nüsslein-Volhard gelang die epochemachende Entdeckung über die grundlegenden genetischen Steuerungsmechanismen der Embryonalentwicklung und erhielt den Nobelpreis für Medizin. Annemarie Schimmel, die berühmteste Orientalistin Deutschlands, war eine der bedeutendsten Interpretinnen der islamischen Mystik. Rosalyn Sussman Yalow gelangte als Physikerin und Nuklearmedizinerin von Weltrang zu Ehren und wurde mit dem Nobelpreis für Medizin ausgezeichnet. * Bestellungen des Taschenbuches „Superfrauen 5 – Wissenschaft“ oder der CD-ROM „Superfrauen: 14 Bücher auf einer CD-ROM“ bei: www.buch-shop-mainz.de * Weblinks: http://biografien-news.blog.de http://userblogs.free-radio.de/index.php/superfrauen
Branchennachricht
06.10.06
Erste biowissenschaftliche Simulationen auf Europas schnellstem Vektorrechner Seinem leistungsstärksten "Mitarbeiter" begegnet der Vorstandsvorsitzende der Insilico Biotechnology AG, Klaus Mauch, jeden Tag schon vor Arbeitsbeginn. Nur wenige Schritte vom Firmensitz in Stuttgart-Vaihingen entfernt befindet sich das Höchstleistungsrechenzentrum der Universität Stuttgart. Dort arbeitet seit Anfang Oktober 2006 der europaweit schnellste Computer an hochkomplexen Operationen, die den Technologievorsprung der Insilico durch biotechnologische Computersimulationen weiter festigen sollen. "Probleme, die bisher gar nicht oder nur mit einem immensen Zeitaufwand zu lösen waren, lassen sich nun plötzlich knacken", begeistert sich Klaus Mauch angesichts der neuen Möglichkeiten für Insilico. Auch Dr. Klaus Eichenberg, Geschäftsführer der BioRegio STERN Management GmbH, begrüßt die erste systembiologische Anwendung auf dem neuen Superrechner entschieden: "Das Kooperationsprojekt unterstreicht die idealen Bedingungen für Biotech-Unternehmen in dieser Region, schon in wenigen Monaten werden wir Ergebnisse vorliegen haben." Was sich die Bio-Ingenieure der Insilico Biotechnology AG vor allem erhoffen, sind detailgenaue Modelle von Zellstoffwechselvorgängen, um in vergleichsweise kurzer Zeit Optimierungsvorschläge für biotechnologische Produktionsprozesse entwickeln und präsentieren zu können. Insilico - und hier sieht das Unternehmen eine Kernkompetenz - ist damit in der Lage, das gesamte bekannte Stoffwechselgeschehen einer Zelle im Computer zu simulieren. Es lässt sich zeigen, was passiert, wenn in Reaktionsketten eingegriffen wird. Darüber hinaus werden Vorhersagen bezüglich der Reaktionswege, die bei Stoffwechselprozessen zur optimalen Ausbeute an gewünschten Substanzen führen, ermöglicht.´ Aus der Sicht der Insilico-Kunden liegen die Vorteile solcher Simulationen auf der Hand. Biotechnologische Produktionsprozesse können, anstatt nach dem Prinzip von "Trial-and-Error" zu verfahren, gezielt gestaltet und optimiert werden. Entscheidungen von großer wirtschaftlicher Tragweite lassen sich auf der Basis der Rechenergebnisse vorstrukturieren. "Wo wenig Erfolg versprechende Produktionsvarianten ausgeschlossen werden können, ohne dass durch Laborversuche Geld ausgegeben werden muss, entsteht für unsere Kunden ein großes Einsparpotenzial", bringt Klaus Mauch den Nutzen der Insilico-Dienstleistungen auf den Punkt. Bisher interessieren sich vor allem Unternehmen aus dem Bereich der "Weißen Biotechnologie" - konkret: Chemieunternehmen wie Degussa und BASF - aber auch Pharmaunternehmen wie Boehringer Ingelheim für das Stuttgarter Unternehmen. Schließlich kann vor allem bei industriellen Massenproduktionsprozessen, wie der biotechnologischen Herstellung von Vitaminen, jede kleine Verbesserung Millionen einsparen helfen. Bei Modellen, die das gesamte Erbgut einer Spezies darstellen oder Zellstoffwechselprozesse detailliert simulieren, ist Insilico bereits weltweit führend. "Wir haben die wesentlichen Arbeitstiere der Biotechnologie wie das Darmbakterium E. coli oder Hefe komplett in silico, also auf dem Computer, verfügbar", sagt Klaus Mauch, der vom robusten Wachstum seines Unternehmens in den kommenden Jahren überzeugt ist. Die Zusammenarbeit mit dem Höchstleistungsrechenzentrum Stuttgart wird dabei eine bedeutende Rolle spielen. zk/rab Über BioRegio STERN: In der baden-württembergischen Region Stuttgart, Tübingen, Esslingen, Reutlingen und Neckar-Alb ist dieBio Regio STERN Management GmbH gemeinsames Kompetenznetzwerk, Anlauf- und Beratungsstelle für Existenzgründer, Unternehmer und Forscher im Bereich Biotechnologie. BioRegio STERN fördert die Zusammenarbeit unterschiedlichster Disziplinen wie Medizin, Prozesstechnik, Sensorik, Ernährungswissenschaft, biochemische Analytik und Bioinformatik. Einen bedeutenden Schwerpunkt bildet die Regenerationsbiologie. BioRegio STERN vertritt die Interessen der Existenzgründer, Unternehmer und Forscher gegenüber Politik, Medien und Verbänden, bündelt Wirtschaftsförderung und Marketing, berät bei Förderanträgen und Unternehmensfinanzierungen und stützt diese Arbeit durch eine engagierte Presse- und Öffentlichkeitsarbeit. BioRegio STERN wird unterstützt vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Förderprogramms "BioProfile", den Regionen Stuttgart und Neckar-Alb sowie den Städten Stuttgart, Tübingen, Esslingen und Reutlingen. Geschäftsführer ist der Molekular- und Zellbiologe und Investmentanalyst Dr. Klaus Eichenberg. Über Insilico Biotechnology AG: Insilico Biotechnology gestaltet und optimiert biotechnologische Prozesse für die chemische, pharmazeutische, Agro- und Ernährungsindustrie. Insilico verfügt über international anerkannte Expertise sowie eine weltweit einmalige Systembiologie-Plattform, welche proprietäre Datenbanken, Zellmodelle und Rechner gestützte Auswerteverfahren zusammenfasst. Durch Integration und Auswertung experimenteller Daten mittels genomweiter Netzwerkmodelle bietet Insilico neue Lösungen zur Herstellung von Biochemikalien und Biopharmazeutika, validiert Wirkstoffe und verkürzt Entwicklungszeiten von Medikamenten. Im Jahr 2001 als Spin-off der Universität Stuttgart gegründet, beschäftigt Insilico heute acht Mitarbeiter. Geleitet wird das Unternehmen, das im Juli 2006 in eine AG umgewandelt wurde, von Klaus Mauch. Herausgeber: BioRegio STERN Management GmbH, Friedrichstraße 10, 70174 Stuttgart, 07118703540, info@bioregio-stern.de Redaktion: Zeeb Kommunikation, Hohenheimer Straße 58a, 70184 Stuttgart, 07116070719, info@zeeb.info Insilico Biotechnology AG: Klaus Mauch (CEO), Nobelstraße 15, 70569 Stuttgart, 071165696661, www.insilico-biotechnology.com , info@insilico-biotechnology.com Quelle: www.pressreltions.de
Branchennachricht
14.08.06
Bakterien stellen Nano-Cluster aus Edelmetall her Die Nanotechnologie wird von Experten als die Schlüsseltechnologie des 21. Jahrhunderts bezeichnet. Winzigkleine Partikel - ein Nanometer entspricht einem Millionstel Millimeter - werden heute bereits eingesetzt im Automobilbau, in der Optik und Elektronik oder auch in Materialien für Medizin und Hygiene. Die Natur hat eigene Mechanismen auf der Nanometerskala entwickelt. Grundlegendes Wissen um diese natürlichen Prozesse kann zur Entwicklung neuer Nano-Materialien beitragen. Um Nanopartikel aus dem Edelmetall Palladium herzustellen, nutzen Biologen vom Forschungszentrum Rossendorf (FZR) die Eiweißhülle eines Bakteriums als Trägerschicht. Das Bakterium schützt sich mit dieser Hülle vor dem Schwermetall Uran und kann damit in der exotischen Umgebung einer Uranerz-Abfallhalde überleben. Das Bakterium heißt "Bacillus sphaericus JG-A12" und wurde 1997 von einem Biologenteam des FZR in der Halde Johanngeorgenstadt in Sachsen entdeckt. Seine Eiweißhülle, im Fachjargon S-Layer genannt, weist eine regelmäßige Gitterstruktur mit Poren in der Größe von einigen Nanometern auf. Auf diese Gitterstruktur brachten FZR-Wissenschaftler zunächst ein Metallsalz mit gelösten Palladium-Ionen auf. Anschließend beobachteten sie die Anbindung der Metallsalze an die Eiweißhülle mit Hilfe eines patentierten Verfahrens der Infrarot-Spektroskopie. Das Hauptinteresse der Forscher galt genau dieser Interaktion zwischen dem biologischen Molekül und dem Metall. In den Poren des S-Layers verwandelt sich die unedle Metallsalzlösung unter Einsatz von Wasserstoff in das Edelmetall, das in Form von winzigen Palladiumkügelchen in regelmäßigen Abständen auf der Trägerschicht angeordnet ist. Ein solches Kügelchen besteht aus nur 50 bis 80 einzelnen Palladium-Atomen. Im Ergebnis entsteht eine Schicht aus Palladiumclustern mit neuartigen Eigenschaften. Das Bemerkenswerte hierbei ist, dass sich die Eiweißhülle und die Nanopartikel gegenseitig stabilisieren. Damit bleibt das Gesamtsystem sowohl bei hohen Temperaturen als auch in einer säurehaltigen Umgebung hochstabil. Aufgrund ihres kleinen Durchmessers bieten die Palladiumpartikel im Verhältnis zu ihrer Größe sehr viele Oberflächenatome, an denen andere Substanzen binden können. Palladium wird heute vielfach als Katalysator eingesetzt, etwa in der chemischen Industrie oder zur Entgiftung von Autoabgasen. Nano-Katalysatoren aus Palladium sind interessant, da sie bereits bei niedrigeren Temperaturen als Palladium in herkömmlichen Katalysatoren chemische Reaktionen beschleunigen. Die Technologie hierfür wird in vereinzelten Labors auch bereits erprobt. Die FZR-Wissenschaftler gehen jedoch einen Schritt weiter, denn ihr Ziel ist es, neuartige Nano-Katalysatoren mit anderen Edelmetallen wie etwa Gold herzustellen oder aber die Größe für Palladium-Nanocluster gezielt zu verändern. So könnten Einsatzmöglichkeiten und Effizienz von Nanokatalysatoren noch erheblich gesteigert werden. Als erster Gruppe ist es ihnen vor kurzem gelungen, die Art und den Ort der Bindung zwischen dem Edelmetall und der Eiweißhülle des "Bacillus sphaericus JG-A12" genauestens zu bestimmen. Dies ist eine wesentliche Voraussetzung dafür, das S-Layer-Protein gentechnisch zu manipulieren. Selbst Materialien mit neuen optischen oder magnetischen Eigenschaften könnten dann in Zukunft mit der Hilfe von Bakterien erzeugt werden. Die Biologen Dr. Katrin Pollmann, Dr. Mohamed Merroun, Dr. Johannes Raff, Dr. Sonja Selenska-Pobell und der Biophysiker Dr. habil. Karim Fahmy entschlüsselten vor kurzem mit unterschiedlichen Methoden den Mechanismus, wo und wie das Bakterium Edelmetalle in seiner schützenden Proteinhülle bindet. So charakterisierte Karim Fahmy mit Hilfe von Infrarotlicht die Natur der chemischen Gruppen, die die Metall-Protein-Wechselwirkung so stabil machen. Aufgrund dieser Ergebnisse und der bereits vollständig von der Gruppe entschlüsselten Struktur des S-Layers gelang es Johannes Raff, die Bausteine der Proteinhülle, die an der Metallbindung beteiligt sind, zu bestimmen. Mohamed Merroun und Dr. Christoph Hennig, ein weiterer Kollege des Teams, klärten mit Hilfe von Röntgenlicht an der Rossendorf Beamline der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble/Frankreich die atomare Umgebung des Palladiums in der biologischen Matrix. Die Forschungsergebnisse wurden in der Augustausgabe der Fachzeitschrift Biophysical Journal veröffentlicht (http://www.biophysj.org/) in dem Artikel von Karim Fahmy, Mohamed Merroun, Katrin Pollmann, Johannes Raff, Olesya Savchuk, Christoph Hennig, Sonja Selenska-Pobell: "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy". Wesentlich für den Erfolg dieser Arbeit war die zielgerichtete Integration sich ergänzender Forschungsmethoden von Biologie, Chemie, Physik und Spektroskopie. Insgesamt beschäftigen sich weltweit bisher nur wenige Forschergruppen mit den spezifischen Eigenschaften von bakteriellen S-Layern, einem neuen und vielversprechenden Forschungsfeld. Weitere Informationen: Dr. Sonja Selenska-Pobell, Dr. Johannes Raff, Dr. Katrin Pollmann Institut für Radiochemie Tel.: 03512602989 oder - 2951 oder - 2946 s.selenska-pobell@fz-rossendorf.de, j.raff@fz-rossendorf.de, k.pollmann@fz-rossendorf.de Dr. Karim Fahmy Institut für Strahlenphysik Die aktuelle Telefonnummer kann über die FZR-Pressestelle erfragt werden. Pressekontakt: Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit Forschungszentrum Rossendorf Tel.: 03512602450 oder 016096928856 Fax: 03512602700 c.bohnet@fz-rossendorf.de Postanschrift: Postfach 510119 ? 01314 Dresden Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden Information: Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie, o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006). Quelle: www.pressrelations.de
Branchennachricht
19.06.06
Publikation von organokatalytischen Kaskaden-Prozessen in der Zeitschrift Nature Die selektive Synthese komplexer organischer Moleküle stellt noch immer eine große Herausforderung dar, die durch viele Reinigungsschritte von Zwischenprodukten, die Einführung und wieder Abspaltung von Schutzgruppen sowie die gezielte Darstellung von spiegelbildlich reinen Molekülen erschwert ist. Sowohl aus ökologischer als auch ökonomischer Sicht werden seit kurzem katalytische Prozesse angestrebt, bei denen einfache Ausgangsstoffe und Organokatalysatoren (Metall-freie kleine organische Moleküle) eingesetzt werden. Nur durch gezielte Steuerung der Prozesse kann dabei erreicht werden, dass von den in der Synthese entstehenden räumlich unterschiedlich angeordneten Molekülen durch geschickte Wahl des Katalysators nur eines bevorzugt gebildet wird. Ein viel versprechender Lösungsansatz zu dieser synthetischen Herausforderung kann durch einen Dominoprozess erreicht werden, über den nun die weltweit hoch angesehene Zeitschrift Nature basierend auf den Forschungsergebnissen der Arbeitsgruppe um Professor Enders am Lehrstuhl I für Organische Chemie der RWTH Aachen berichtet (Nature 2006, 441, 861). In Analogie zu Dominosteinen, handelt es sich dabei um Reaktionen, die einmal angestoßen bis zum Ende durchlaufen und oft sehr selektiv sein können. Angeregt durch die von Mutter Natur in der Biosynthese verwendeten Enzym-katalysierten Kaskaden-Prozesse, hat Professor Enders mit seinen Doktoranden Matthias R. M. Hüttl und Christoph Grondal einen solchen Dominoprozess entwickelt, in dem aus drei einfachen Ausgangsverbindungen fünffach-substituierte Cyclohexenderivate mit vier Stereozentren gebildet werden. Den Anstoß hierzu gibt ein einfacher Organokatalysator, abgeleitet von der natürlichen Aminosäure Prolin, der stereoselektiv jeden einzelnen der drei Kohlenstoff-Kohlenstoff-verknüpfenden Schritte beschleunigt und von 16 möglichen Stereoisomeren nur ein spiegelbildlich reines Hauptisomer bildet. Die resultierenden Produkte dieser dreifachen Kaskade können als wertvolle Synthesebausteine in der organischen Chemie und als Vorläufer von pharmazeutischen Wirkstoffen dienen. Weitere Informationen erhalten Sie bei: Univ.-Prof. Dr. Dieter Enders Institut für Organische Chemie der RWTH Aachen Telefon: +492418094676 Fax: +492418092127 E-Mail: Enders@rwth-aachen.de Quelle: www.pressrelations.de
Branchennachricht
15.05.06
Entstehung von Erdöl Was von abgestorbenen Lebewesen übrig bleibt, hat in der Regel nicht lange Bestand. Organismen bestehen zu einem grossen Teil aus Kohlenhydraten und Proteinen, die durch Abbauprozesse leicht zerstört werden. Dennoch findet man in Millionen von Jahren alten Gesteinen organisches Material, beispielsweise in Form von Kohle oder Erdöl. Das liegt daran, dass die Lipide mit ihre Kohlenstoff-Doppelbindungen relativ schnell in gesättigte Verbindungen ohne Doppelbindungen umgewandelt werden, die der Zersetzung besser standhalten. Wie und unter welchen Umständen diese Umwandlung genau abläuft, darüber gab es bisher nur vage Vorstellungen. Einig war man sich, dass die Konservierung bevorzugt in einer sogenannt anaeroben, also sauerstofffreien Umgebung stattfindet und dass Mikroorganismen für die Umwandlung verantwortlich sind. Einem Forscherteam der ETH Zürich und der Université Louis Pasteur in Strassburg ist es nun gelungen, diesen Mechanismus besser zu verstehen. Wie die Forscher letzte Woche in Science Express berichteten, spielt ein rein chemischer Prozess in der frühen Phase der Sedimentablagerung bei der Stabilisierung der organischen Verbindungen eine entscheidende Rolle. Die These, es wären in erster Linie Mikroorganismen, welche die ungesättigten Kohlenstoffketten in stabile Formen überführen, muss demnach revidiert werden. Ungewöhnliches Gewässer Die Forscher haben für ihre Studie Wasserproben und Sedimente aus dem Cadagnosee im Kanton Tessin in der Schweiz untersucht. Der Bergsee weist einige Besonderheiten auf, wie Stefano Bernasconi vom Geologischen Institut der ETH Zürich erklärt. Das rund 20 Meter tiefe Gewässer verfügt über eine äusserst stabile Schichtung: Oben ist das Wasser sauerstoffhaltig, unten hingegen herrschen anaerobe Bedingungen. Die beiden Wasserpakete sind durch eine scharfe, rund einen Meter dicke Schicht voneinander getrennt, in der hochspezialisierte, rötlich gefärbte Bakterien ihren Lebensraum finden. Anaerob ist die untere Schicht, weil Unterwasser-Quellen sulfathaltiges Wasser in den See einbringen. Das Sulfat wird von den Bakterien im Sediment und in der unteren Wasserschicht zu Schwefelwasserstoff umgewandelt. Dadurch entstehen die Voraussetzungen, dass abgestorbenes organisches Material besser konserviert werden kann. Die rötlichen Bakterien in der Grenzschicht nützen den Schwefelwasserstoff für eine spezielle Form von Photosynthese und verhindern so, dass dieser in die obere Wasserschicht entweicht. Ideales Modellsystem Der Cadagnosee ist wegen dieser speziellen Situation ein ideales Modellsystem für geologisch wichtige Lebensräume. Ähnliche Verhältnisse waren in erdgeschichtlicher Zeit in vielen Meeresbecken anzutreffen. Genau dort entstanden im Laufe der Zeit Muttergesteine, in denen das abgelagerte organische Material zu Erdöl reifte. Heutzutage findet man eine vergleichbare Situation nur an vereinzelten Stellen, etwa im Schwarzen Meer und in gewissen Fjorden Norwegens. Die Forscher haben nun festgestellt, dass die Umwandlung von gewissen organischen Verbindungen, die für Bakterien und Algen typisch sind, in Anwesenheit von Schwefelwasserstoff offenbar kurz nach dem Absterben der Lebewesen einsetzt. Teilweise gesättigte Kohlenstoffketten findet man bereits in den obersten Sedimentschichten, die erst vor kurzem abgelagert wurden. Auffallend ist auch, dass das Aufbrechen der Doppelbindungen an beliebigen Stellen entlang der Kohlenstoffketten stattfindet. "Das deutet darauf hin, dass die Umwandlung nicht durch Mikroorganismen verursacht wird", so Bernasconi. "Denn diese setzten mit ihrem Metabolismus in der Regel an bestimmten Stellen an." Nachbildung im Labor Ihre These konnte die Gruppe mit Laboruntersuchungen bestätigen. Die Wissenschaftler haben künstliche Lösungen mit den entsprechenden organischen Verbindungen bei 50 bis 90 Grad einige Wochen lang reagieren lassen. Die Analyse zeigte, dass im Labor genau dieselbe Umwandlung stattfindet, wie man sie in den Sedimenten des Sees beobachten kann. Die chemische Reaktion verläuft dabei in zwei Schritten, wie Bernasconi erläutert: Zuerst bindet sich eine einfache Schwefel-Wasserstoff (SH) Gruppe an die Kohlenstoffkette. In einem zweiten Schritt wird diese Gruppe dann reduziert; das Schwefelatom wird herausgelöst, so dass nur noch ein Wasserstoffatom übrig bleibt. Bernasconi ist überzeugt, dass das Team einen wichtigen Mechanismus im globalen Kohlenstoffkreislauf entdeckt hat. "Das hilft uns, die Entstehung von Erdöl besser zu verstehen", ist er überzeugt. Von Bedeutung könnte der neu entdeckte Prozess auch bei den sogenannten "Black Smokers" sein. Dabei handelt es sich um untermeerische Quellen, bei denen heisses, schwefelhaltiges Wasser ausströmt. Man vermutet, dass in der Umgebung dieser Quellen das Leben auf der Erde entstanden sein könnte. Rund um diese "Black Smokers" könnten ähnliche chemische Reaktionen stattfinden wie in den Tiefen des unscheinbaren Cadagnosees. Zusatzmaterial: Bilder in hoher Auflösung vorhanden. Bitte melden Sie sich unter anke.poiger@sl.ethz.ch Quelle: www.pressrelations.de
Branchennachricht
20.04.06
Die Körpersprache von Biomolekülen Woher weiß eine Zelle, dass sie sich teilen soll? Wie erhält ein Enzym die Botschaft, ein bestimmtes Gen zu aktivieren? In welcher Weise werden Signale aus der Umwelt ins Zellinnere weitergeleitet? Schalter im Miniformat sorgen dafür, dass alle diese Prozesse nach Plan ablaufen. Dabei verständigen sich die Biomoleküle, meistens Proteine, in einer besonderen Sprache: Über Änderungen ihrer Form - auch Konformation genannt - leiten sie Signale weiter oder blockieren eine Reaktion. Die geringfügigste Änderung ihrer räumlichen Struktur kann dabei verheerende Fehlschaltungen zur Folge haben. Wird beispielsweise ein Proteinschalter, der das Signal für Zellteilung gibt, in seiner Stellung 'An' festgehalten, werden sich die Zellen unkontrolliert teilen und es entsteht Krebs. Diesen grundlegenden und faszinierenden molekularen Prozessen in den Schaltmolekülen der Zellen widmet sich die VolkswagenStiftung in ihrer Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion', die 1998 ins Leben gerufen wurde. Für acht Vorhaben in dieser Initiative bewilligt die Stiftung jetzt rund 3,3 Millionen Euro: 1.) 429.000 Euro für das Vorhaben 'Information transmission pathways in an allosteric protein' von Professor Dr. Wolfgang Hillen und Professor Dr. Yves Muller vom Institut für Biologie der Universität Erlangen-Nürnberg und Professor Dr. Peter Gmeiner vom Institut für Pharmazie und Lebensmittelchemie, ebenfalls Universität Erlangen-Nürnberg; 2.) 787.700 Euro für das Vorhaben 'TGF-beta signalling biosensors' von Dr. Marcos González-Gaintán vom Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, Professor Dr. James Smith vom Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, und Dr. Carsten Schultz, Gene Expression Unit am Europäischen Laboratorium für Molekularbiologie in Heidelberg; 3.) 375.800 Euro für das Vorhaben 'Substrate Control of the active conformation of the respiratory complex I' von Professor Dr. Thorsten Friedrich und Professor Dr. Bernhard Breit vom Institut für Organische Chemie und Biochemie der Universität Freiburg sowie Professorin Dr. Petra Hellwig von der Faculté de Chimie, Université Louis Pasteur, Strasbourg. Nähere Informationen zu diesen Vorhaben finden Sie im Folgenden - außerdem im Anschluss eine Übersicht der weiteren bewilligten Projekte Zu 1: Interne Kommunikation von Proteinen Wie erfährt die rechte Hälfte, was die linke gerade tut? Viele Proteine besitzen mindestens zwei räumlich voneinander getrennte Bindestellen, an denen Substrate oder andere Moleküle andocken können. Bei diesen 'allosterischen' Proteinen wird in der Regel die Aktivität der einen Bindestelle vom Zustand der anderen gesteuert. Bindet also ein so genanntes Effektormolekül an der einen Seite, wird diese Information über Änderung der räumlichen Form an die andere Bindestelle weitergegeben. Das Resultat ist auch dort eine Konformationsänderung, die nun eine weitere Aktivität zulässt oder stoppen kann. Zwar hat man heute mit Kristallstrukturen bereits eine Reihe von Proteinen mit Substraten und Effektoren dreidimensional sichtbar machen können - doch Regeln für die Mechanik und Energetik proteininterner Kommunikation gibt es bisher nicht. Hier setzen die Wissenschaftler aus Erlangen-Nürnberg mit ihrem Projekt an: Am Beispiel des Tet-Repressors wollen sie die Informationsweitergabe analysieren und allgemein gültige Prinzipien herausfinden. Tetrazyklin ist als Antibiotikum bekannt, das die bakterielle Proteinsynthese hemmt. Es fungiert beim Tet-Repressor als Effektormolekül, reguliert über Bindung an den Repressor die Genexpression. Der Tet-Repressor ist strukturell sehr gut untersucht und bietet sich als Modell an. Die Wissenschaftler haben bereits Varianten des Rezeptors mit veränderter Allosterie sowie ein Peptid isoliert, das den Rezeptor durch eine andere Strukturänderung induziert als Tetrazyklin. Auch neuartige Tetrazyklinderivate werden getestet, um den Kontaktketten zwischen den Bindestellen auf die Spur zu kommen. Die Kombination von Molekulargenetik, Synthesechemie und strukturellen Methoden erhöht die Chancen, zu allgemein gültigen Prinzipien zu kommen. ------------------------------- Kontakte zu Projekt 1 Universität Erlangen-Nürnberg Institut für Biologie Lehrstuhl für Mikrobiologie Prof. Dr. Wolfgang Hillen Telefon: 091318528081 E-Mail: whillen@biologie.uni-erlangen.de Institut für Biologie Lehrstuhl für Biotechnik Prof. Dr. Yves Muller Telefon: 091318523081 E-Mail: ymuller@biologie.uni-erlangen.de Institut für Pharmazie und Lebensmittelchemie Prof. Dr. Peter Gmeiner Telefon: 091318522584 E-Mail: gmeiner@pharmazie.uni-erlangen.de ------------------------------------------ Zu 2: Biosensoren machen Signalketten sichtbar Nicht einzelne Signale, sondern komplexe Signalkaskaden sorgen dafür, dass sich ein Embryo entwickeln kann. Wichtige Signale geben dabei die Wachstumsfaktoren der Transforming Growth Factor beta-Familie, kurz TGF-?. Sie werden bereits intensiv erforscht, denn wenn ihre Signalfunktion im Zellwachstum außer Kontrolle gerät, können Krebs und andere Krankheiten entstehen. Während die molekularen Aspekte der Signalkette und die konformationellen Änderungen einzelner Komponenten schon recht gut bekannt sind, weiß man wenig über die zeitliche und räumliche Dynamik der Prozesse. Hierfür interessiert sich das Team aus Dresden, Heidelberg und Cambridge: Die Forscher wollen Biosensoren für verschiedene Komponenten der Signalkette 'bauen' und damit die Etappen der Signalweiterleitung in Echtzeit verfolgen. Biosensoren sind Messfühler, die mit biologischen Komponenten ausgestattet sind. Ihr Einsatz macht es möglich, Protein-Protein-Wechselwirkungen in der lebenden Zelle auch quantitativ zu bestimmen. Ziel der Forscher ist es vor allem, TGF-Signale sowohl während der Embyonalentwicklung als auch für bestimmte Krankheiten zu messen. ------------------------------------------------------------- Kontakte zu Projekt 2 Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden Dr. Marcos González-Gaitán Telefon:03512102539 E-Mail: gonzalez@mpi-cbg.de University of Cambridge Prof. Dr. James Smith Telefon: 00441223334133 E-Mail: j.bate@gurdon.cam.ac.uk Europäisches Laboratorium für Molekularbiologie, Heidelberg Dr. Carsten Schultz Telefon: 06221387210 E-Mail: carsten.schultz@EMBL-Heidelberg.de ------------------------------------------ Zu 3: Energiegewinn durch räumliche Bewegungen Auch bei der Energiegewinnung von Zellen spielen Konformationsänderungen von Molekülen und Molekülkomplexen die entscheidende Rolle. In der Atmungskette - dem entscheidenden Prozess im Energiestoffwechsel - wird ATP bereitgestellt, die universelle Energiewährung, die alles antreibt. Der erste Komplex der Zellatmung ist die NADH:Ubichinon-Oxidoreduktase, ein Enzym, das eine wichtige Schaltstelle darstellt: Es überträgt Elektronen vom Elektronencarrier NADH auf Ubichinon und nutzt die dabei freiwerdende Energie, um Protonen von der Innenseite der Membran nach außen zu transportieren. Auf diese Weise entsteht ein Membranpotenzial, das zum Aufbau des Energieträgers ATP, aber auch für Transportvorgänge und andere energieabhängige Vorgänge genutzt werden kann. Der Mechanismus dieses wichtigen Enzymkomplexes am Beginn der Atmungskette ist noch weitgehend unverstanden. Klar ist, dass die Bindung von NADH, nicht jedoch von NADPH - der phosphorylierten Form - große räumliche Bewegungen auslöst und das Molekül für Ubichinon öffnet. Die Wissenschaftler aus Freiburg und Strasbourg wollen in dem von der VolkswagenStiftung geförderten Vorhaben untersuchen, welche Konformationsänderungen abgewandelte NADH-Derivate zur Folge haben. Die Untersuchungen an der NADH:Ubichinon-Oxidoreduktase sind auch für die Medizin relevant, denn eine Fehlfunktion dieses Komplexes ist mit neurodegenerativen Krankheiten wie dem Parkinson-Syndrom verknüpft. -------------------------------------- Kontakte zu Projekt 3: Universität Freiburg Institut für Organische Chemie und Biochemie Prof. Dr. Thorsten Friedrich Telefon: 07612036060 E-Mail: tfriedri@uni-freiburg.de Prof. Dr. Bernhard Breit Telefon: 07612036051 E-Mail: bernhard.breit@orgmail.chemie.uni-freiburg.de Université Louis Pasteur, Strasbourg Prof. Dr. Petra Hellwig E-Mail: hellwig@chimie.u-strasbg.fr -------------------------------------- Bewilligt wurden in der Initiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' auch folgende fünf Vorhaben: 4.) 461.800 Euro für das Vorhaben 'Synthetic selectivity filters for porin-like ion channels' von Professor Dr. Ulrich Koert, Professor Lars-Oliver Essen und Dr. Henning Mootz vom Fachbereich Chemie der Universität Marburg; Kontakt zu Projekt 4: Universität Marburg Fachbereich Chemie Professor Dr. Ulrich Koert Telefon: 064212826970 E-Mail: koert@chemie.uni-marburg.de ----------------------------------- 5.) 79.400 Euro für das Vorhaben 'Conformation-activity relationship of the archazolids: Development of a novel class of highly potent V-ATPase inhibitors' von Dr. Dirk Menche von der Abteilung Medizinische Chemie der Gesellschaft für Biotechnologische Forschung in Braunschweig (GBF) und Dr. Teresa Carlomgno vom Max-Planck-Institut für biophysikalische Chemie in Göttingen; Kontakt zu Projekt 5: GBF Braunschweig Abteilung Med. Chemie Dr. Dirk Menche Telefon: 05316181346 E-Mail: dirk.menche@gbf.de ---------------------------------- 6.) 359.000 Euro für das Vorhaben 'Elucidation of the conformational dynamics of the spliceosome using small molecule inhibitors' von Professor Dr. Reinhard Lührmann und Privatdozent Dr. Markus Wahl von der Abteilung Zelluläre Biochemie am Max-Planck-Institut für biophysikalische Chemie in Göttingen und Professor Dr. Herbert Waldmann vom Fachbereich Chemie, Chemische Biologie, Universität Dortmund; Kontakt zu Projekt 6: Max-Planck-Institut für biophysikalische Chemie Abt. Zelluläre Biochemie Prof. Dr. Reinhard Lührmann Telefon: 05512011405 E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de ------------------------------------------ 7.) 398.800 Euro für die Fortsetzung des Vorhabens 'Pleckstring domains: from allosteric regulation of protein function towards novel tools for monitoring intracellular reactions' von Dr. Carsten Schultz und Dr. Michael Sattler, beide EMBL - Europäisches Laboratorium für Molekularbiologie in Heidelberg, und Professor Dr. Mathias Gautel, Cardiovascular Division der GKT School of Medicine, King's College, London; Kontakt zu Projekt 7: EMBL, Heidelberg Dr. Michael Sattler Telefon: 06221387552 E-Mail: sattler@embl-heidelberg.de ----------------------------------- 8.) 393.100 Euro für die Fortsetzung des Vorhabens 'Modulation of the slow conformational dynamics in Ras and Ras-related proteins by drugs: development of an new type of specific Ras-inhibitor' von Professor Dr. Hans-Robert Kalbitzer vom Institut für Biophysik und physikalische Biochemie sowie Professor Dr. Burkhard König vom Institut für Organische Chemie, beide Universität Regensburg, und Professor Dr. Christian Herrmann von der Fakultät für Chemie, Physikalische Chemie, Universität Bochum. Kontakt zu Projekt 8: Universität Regensburg Institut für Biophysik und physikalische Biochemie Prof. Dr. Hans-Robert Kalbitzer Telefon: 09419432595 E-Mail: hans-robert.kalbitzer@biologie.uni-regensburg.de -------------------------------------------------------- Die Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' wird in diesem Jahr eingestellt. Sie hat dazu beigetragen, das Gebiet der Chemischen Biologie in Forschung und Lehre in der deutschen wie europäischen Forschungslandschaft zu verankern. Über die gesamte bisherige Laufzeit wurden - einschließlich der jetzigen Vorhaben - 125 Bewilligungen ausgesprochen, für die rund 23 Millionen Euro bereit gestellt wurden. Mit Stichtag 15. September 2006 können die letzten Anträge eingereicht werden. Kontakt VolkswagenStiftung Presse- und Öffentlichkeitsarbeit Dr. Christian Jung Telefon: 05118381380 E-Mail: jung@volkswagenstiftung.de Kontakt Förderinitiative der VolkswagenStiftung Dr. Matthias Nöllenburg Telefon: 05118381290 E-Mail: noellenburg@volkswagenstiftung.de
Branchennachricht
06.03.06
Forscher klären katalytischen Mechanismus von antiviralem Protein Die Aktivität eines menschlichen Proteins, das an der Abwehr von Viren und anderen Krankheitserregern beteiligt ist, konnte der RUB-Chemiker Prof. Dr. Christian Herrmann in Zusammenarbeit mit Forschern des Max-Planck-Instituts in Dortmund und einem französischen Labor auf molekularer Ebene aufklären: Ein funktionelles Merkmal der Proteinklasse hGBP1 (humanes Guanylat-bindendes Protein 1) besteht in der katalytischen Spaltung von sog. Cofaktor-Molekülen. Damit gehen die geordnete Zusammenlagerung (Assemblierung) und strukturelle Umwandlungen der Proteine einher, die für ihre biologische Wirkung von Bedeutung sind. Das von den Forschern erarbeitete Modell kann zum Verständnis der Funktionsweise einer Vielzahl ähnlicher Proteine dienen und Hinweise für die gezielte Behandlung verschiedener Krankheiten geben. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazin NATURE. Funktionsweise molekularer Maschine aufgeklärt Das Enzym hGBP1 gehört zu einer Klasse von Proteinen, von denen einige eine wichtige Funktion bei der Abwehr von Viren haben, während andere für das Abschnüren von Membranbläschen im Innern der Zelle verantwortlich sind - dies dient der Aufnahme von Substanzen in die Zelle und der Regulation von Rezeptoren an der Zelloberfläche. Von hGBP1 ist eine antivirale Wirkung und ein Einfluss auf die Bildung von Blutgefäßen (Angiogenese) bekannt. Charakteristisch für das Protein ist die Bindung und katalytische Spaltung eines Cofaktors, der einerseits die Struktur und damit die biologische Aktivität des jeweiligen Proteins reguliert. Zum anderen wird durch diesen Spaltungsvorgang bei einigen Proteinen aber auch die Energie für größere, strukturelle Änderungen und damit für die mechanische Arbeit dieser kleinen, molekularen Maschinen geliefert. 'Wir haben herausgefunden, dass die hGBP1-Moleküle nach Bindung eines bestimmten Cofaktors miteinander kommunizieren und eine katalytische Spaltung des Cofaktors stimulieren', erklärt Prof. Herrmann. Zum ersten Mal konnten die Forscher zeigen, wie Proteine durch Selbst-Assemblierung eine katalytische Wirkung hervorrufen, die auf ihr eigenes Verhalten und ihre Funktion zurückstrahlt. Interdisziplinärer Erfolg Das Forschungsergebnis ist das Resultat langjähriger Arbeiten zur Aufklärung eines Katalysemechanismus auf molekularer Ebene. Mit Hilfe vielfältiger experimenteller Methoden aus den Bereichen der biophysikalischen Chemie, der Biochemie und der Röntgen-Strukturanalyse ist es gelungen, die Funktionsweise eines Enzyms in molekularem Detail darzustellen. Durch einen experimentellen Trick konnten sogar sehr kurzlebige Zustände des Enzyms, die besonders kritisch für den katalytischen Vorgang sind, festgehalten und näher untersucht werden. Es ist gelungen, die Beobachtungen und Teilerkenntnisse, die sich mit den verschiedenen Methoden ergaben, zu einem stimmigen Modell zusammenzuführen. 'Es hat sich einmal mehr gelohnt, die interdisziplinäre Arbeit zu suchen und eine wissenschaftliche Fragestellung von allen Seiten zu beleuchten', so Prof. Herrmann. Anwendung für Therapien Die untersuchte Klasse von Proteinen hat außerordentlich vielseitige, biologische Funktionen. Gestörte (mutierte) Varianten dieser Proteine sind für zahlreiche Krankheiten verantwortlich, darunter auch Krebs. Untersuchungen der molekularen Mechanismen zeigen nicht nur, wie ein Protein funktioniert, sondern auch, wie und warum es bei einer bestimmten Störung nicht mehr funktioniert. Dies gibt der Forschung Ansatzpunkte für die Entwicklung von Wirkstoffen und zeigt Möglichkeiten auf, wie eine Krankheit gezielt zu bekämpfen ist. Das hGBP1 kann als Modell für viele andere Enzyme dieser Klasse dienen. 'Für unsere Promovierenden und Studierenden ist an unserer Arbeit besonders faszinierend, dass sie molekulare Grundlagen des Lebens erforschen, die eine deutlich erkennbare Relevanz auch für medizinische Anwendungen haben', so Prof. Herrmann. Titelaufnahme Agnidipta Ghosh, Gerrit J. K. Praefcke, Louis Renault, Alfred Wittinghofer & Christian Herrmann: How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. In NATURE, Volume 439, Number 7080, 2.März 2006 Weitere Informationen Prof. Dr. Christian Herrmann, Lehrstuhl für Physikalische Chemie I (Prof. Dr. Christof Wöll), Ruhr-Universität Bochum, 44780 Bochum, Tel. 02343224173, E-Mail: chr.herrmann@rub.de Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=223369 Quelle: www.pressrelations.de
Branchennachricht
01.12.05
Neue Strukturendatenbank Die Suche nach neuen Werkstoffen und Materialien mit 'maßgeschneiderten' Eigenschaften für bestimmte Anwendungen ist ein wichtiger Forschungsgegenstand in den Materialwissenschaften, aber auch in der Chemie, Physik und Kristallographie. In der Grundlagenforschung ist das Verständnis des Zusammenhangs zwischen Struktur und Eigenschaften ein zentrales Arbeitsgebiet: es ist heute bekannt, warum Diamant hart, inkompressibel und transparent ist, während Graphit weich und sehr kompressibel ist und das Licht stark absorbiert, obwohl beide aus dem selben Element, nämlich Kohlenstoff, bestehen. Ein derart vertieftes Verständnis für alle Strukturen würde es erlauben, von gewünschten Eigenschaften auf die passende Verbindung zurückzuschließen. Dieses Wissen kann jedoch, angesichts der großen Zahl möglicher Verbindungen und des hohen Kostenaufwandes nicht mit experimentellen Untersuchungen generiert werden. Statt dessen ist es sinnvoll, Eigenschaften mit Computersimulationen, die seit einigen Jahren in der 'Computational Crystallography' und den eng verwandten Nachbardisziplinen in Chemie und Physik eingesetzt werden, vorherzusagen und auf ihre Anwendbarkeit zu testen. Im Rahmen eines internationalen Konsortialprojektes soll eine Datenbank zur Simulation von Materialeigenschaften und die dazu passende Infrastruktur entwickelt werden, die die gewünschte Information entweder bereits enthält, oder aber erzeugt. In diesem Projekt, das von dem britischen 'Department of Trade and Industry' mit einem Finanzaufwand in Höhe von 2,7 Millionen € unterstützt wird, ist die Arbeitsgruppe des Frankfurter Kristallographen Prof. Björn Winkler, Institut für Mineralogie, für die eigentlichen Berechnungen von Strukturen und Eigenschaften verantwortlich. Die Einbindung der Frankfurter Arbeitsgruppe unterstreicht die internationale Reputation, die sich diese Gruppe auf dem Gebiet der Computational Crystallography erarbeitet hat und ist ein Zeichen dafür, dass die Forschungsinfrastruktur in Frankfurt den hohen Anforderungen, die an die Mitglieder in diesem Konsortium gestellt werden, gewachsen ist: Das Center for Scientific Computing wird einen Teil der benötigten Rechenleistung zur Verfügung stellen. Das Hochschulrechenzentrum hat in sehr kurzer Zeit dafür gesorgt, dass eine neue, sehr leistungsfähige Anbindung an das Internet den Mitarbeitern in der Mineralogie die Mitarbeit in diesem Konsortium ermöglicht. Die weiteren Beteiligten an dem Konsortium sind die University of Cambridge (UK), eine britische Großforschungseinrichtung, das Council for the Central laboratory of the Research Councils (CCLRC) Daresbury und die Unternehmen IBM (UK) und Accelrys, Cambridge, UK. Die zu erarbeitende Datenbank ist sehr nutzerfreundlich angelegt: Benutzer wie etwa Materialwissenschaftler und -entwickler in der Industrie können auf der Suche nach einer Verbindung mit einer bestimmten Eigenschaft über ein Webportal die Datenbank abfragen, ob die gewünschten Informationen bereits abgespeichert sind. Ist dies nicht der Fall, wird ein Expertensystem den Benutzer dabei anleiten, diese Eigenschaften zu berechnen. Das System wird dabei diese zum Teil sehr aufwändigen Rechnungen für den Nutzer unsichtbar automatisch auf unterschiedliche Computer verteilen (grid computing). Die Daten werden, ebenfalls für den Nutzer unsichtbar, in verteilten Datenbanken, unter anderem in Daresbury, Cambridge und Frankfurt, vorgehalten, wobei ebenfalls Grid-Technologie (z. B.: storage resource brokers) zum Einsatz kommt. Die außerordentlich umfangreichen Datenmengen müssen mit noch zu entwickelnden 'Metadaten' beschrieben und mit einer 'Mark up-language' (CMLChemical markup language, eine Variante der eXtended markup language XML) für die automatisierte Verarbeitung aufbereitet werden. Die Entwicklung der 'Mark up language' ist in Cambridge angesiedelt, während die Gruppen in Daresbury und bei IBM sich hauptsächlich um die Datenbankaspekte kümmern. Die geplante Kommerzialisierung des Projekts wird von der Firma Accelrys vorbereitet. Die Projektförderdauer beträgt drei Jahre; bis Ende 2008 soll die Datenbank den Nutzern zur Verfügung stehen. Kontakt: Prof. Björn Winkler; Institut für Mineralogie; Senckenberganlage 30, 60325 Frankfurt; Tel.: 06979828291; Fax: 06979822101; E-Mail: b.winkler@kristall.uni-frankfurt.de Quelle: www.pressrelations.de
|
» | Stellen auf den Kanarischen Inseln |
» | Chemikalien für die eigene Firma |
» | 3D-Drucker in der chemischen Industrie |
» | Faehigkeiten, die ein Chemiker haben sollte |