Chemie- und Pharma-Industrie
Chemie & Pharma
Verpackungsbranche

MEMBRAN in Chemie

Chemie - MEMBRAN

Chemie Unternehmen - Jobs - Stellen - Markt

11 Treffer mit dem Suchbegriff

Membran
PHARMA+CHEMIE - Unternehmen
58300  WETTER

NEWS!! Ersatzteil für Kompressor AT, NEU für alle Fabrikate A - Z mit ca. 852.637 Ersatzteilnummern Reparatur aller Kompressorfabrikate von 1,1450Kw in der gesamten BRD.Kompressorenfilter, Ersatzteile und Verdichterblöcke
NEWS!! Ersatzteil für Kompressor AT, NEU für alle Fabrikate A - Z mit ca. 852.637 Ersatzteilnummern Reparatur aller Kompressorfabrikate von 1,1450Kw in der gesamten BRD.Kompressorenfilter, Ersatzteile und Verdichterblöcke NEU,AT,LAGERUNG.Aktionspreise unter http://www.teichmann.com und www.pzt-filter.de NEWS!! Filter für Auto, Bahn, Kompressor, Motor, Vakuumpumpe mit ca. 343.000 Filternummern Aktivkohle, Aktivkohlefilter, Autofilter, Bahnfilter, Baumaschinenfilter, eutelfilter, Dampffilter, Druckluftfilter, Filterschlauch, Gasfilter, Hydraulikfilter, Industriefilter, Kolbenkompressorfilter, Kompressorfilter, Kassettenfilter, Kraftstofffilter, Luftentölbox, Luftentölelement, Luftfilter, Membranfilter, Mikrofilter, Motorfilter, Ölfilter, Rotationskompressorfilter, Schraubenkompressorfilter, Schweissrauchfilter, Staubfilter, Sterilfilter, Taschenfilter; Vakuumfilter, Vakuumpumpenfilter, Wasserfilter Region: Nordrhein-Westfalen http:// www.pzt-filter.de Ort: WETTER Straße: Im Külken 7 Tel.: 004923357401 Fax: 004923357401 E-Mail: aktionen@pzt-filter.de

Membran
CHEMIE+PHARMA - Unternehmen
82178  Puchheim

Sensortechnics entwickelt und produziert Drucksensoren und Druckmesssysteme, Füllstandssensoren und Füllstandsschalter sowie Sauerstoff- und Durchflusssensoren.
Sensortechnics’ Produktpalette erstreckt sich über einen weiten Bereich der Sensorik und Aktorik. Sie umfasst Drucksensoren, Drucktransmitter und Druckmesssysteme von 1 mbar bis 1000 bar sowie Füllstands-, Durchfluss- Sauerstoff-, und Kraftsensoren. Weiterhin bietet Sensortechnics berührungslose Luftblasen- und Flüssigkeitsdetektoren. Das Angebot an Produkten der Aktorik beinhaltet Miniatur-Magnetventile, Miniatur-Membranpumpen und elektronische Druckregler. Sensortechnics besitzt mehr als 25 Jahre Erfahrung und Kompetenz in der Herstellung kundenspezifischer Sensoren und in der Entwicklung komplexer, integrierter Sensorik- und Fluidiksysteme für OEM-Kunden weltweit. Region: Bayern http:// www.sensortechnics.com Ort: Puchheim Straße: Boschstr. 10 Tel.: +49 (0)89800830 Fax: +49 (0)898008333 E-Mail: info@sensortechnics.com

Membran
PHARMA+CHEMIE - Unternehmen
42285  Wuppertal

Die FRANZ DÜRHOLDT GmbH & Co. KG bietet eine Vielzahl von hochwertigen Spezialarmaturen für die chemische Industrie - Qualität Made in Germany!
Seit Jahrzehnten ist DÜRHOLDT im Bereich der Schlauch-Membranventile und Schlauch-Quetschventile Markt führend in Deutschland und im europäischen Raum. Die besondere Stärke liegt in Speziallösungen für den Industriearmaturenbau, vornehmlich mit ausgekleideten Armaturen zum Absperren und Regeln von aggresiven, abrasiven, feststoffhaltigen, staubförmigen und körnigen Medien und Stoffen. Wesentliche Werte, wie Qualität, Zuverlässigkeit, Pünktlichkeit, Innovation, Loyalität und Präzision sind dabei tragende Säulen des Erfolges und der weiteren Entwicklung. Auf der Basis zertifizierter Prozesse nach DIN EN ISO 9001:2008 und Druckgeräte-Richtlinie 97/23/EG ist das Unternehmen im Sinne einer optimalen Qualität und dem absoluten Ziel der Kundenzufriedenheit ausgerichtet. Weitere Informationen zu unseren Produkten und Leistungen: www.duerholdt.de FRANZ DÜRHOLDT GmbH & Co. KG - Industriearmaturen Friedrich-Engels-Allee 259 D-42285 Wuppertal Tel.: +49-(0)202280860 Fax: +49-(0)2022808640 Region: Nordrhein-Westfalen http:// www.duerholdt.de Ort: Wuppertal Straße: Friedrich-Engels-Allee 259 Tel.: +49-(0)202280860 Fax: +49-(0)2022808640 E-Mail: info@duerholdt.de

Membran
Termin/Messe/Event
Dongguan, China

17.03.10 -
20.03.10
Foundry and Diecasting Industries Dongguan, China
  1.Die-casting Equipments Cool Die-casting Machines, Heat Die-casting Machine, Low-pressure Die-casting Machine, Pressure Die-Casting Machine, Hydraulic Press Machine, Oil Press Machine, Compression Casting Machine Peripheral Equipment and Fitting, Gravity Casting, Pattern Making Equipment, etc. 2.Foundry Equipments Mechanical Appliance of Continuous Operation Furnace, Accessory Equipment and Parts of Heat Treatment Furnace, Thermal Insulation Material, Heat-treatment for Foundries, Molding and Core-making Machine, Casting Cleaning, Gas Separation and Recovery Technology, Colored and Special Casting Equipment, Infiltrating Equipment, Automotive Shaping System, Software, Transportation and Hoisting Equipment, etc. 3.Foundry & Die-casting Materials Raw Materials, Accessory Materials, Casting Apparatus, Sand Preparation, Casting Tectorial Membranes, Casting Coatings, Resin, Solidified Agent, Aluminum, Zinc, Copper Alloy, Alloy Spindle, Compound Deoxidizers, Cleansing Agent, Agglutinant, Ferroalloy, Thermal Insulation Material and other Casting Material, etc.  

Membran
Event/Termin/Messe
Shanghai, China

01.12.10 -
03.12.10
SpeChem China Shanghai, China
  ◇ Fine & Specialty Chemicals: Pharmaceutical Intermediates, Agrochemical Intermediates, Dye Intermediates, Electronic Chemicals, Water Treatment Chemicals, Oilfield Chemicals, Household Products, Paper Chemicals, Textile Chemicals, BioChemical, Custom Synthesis, Catalysts, Rubber and Plastic Assists, Reagent, Surfactants, Food & Feed Additives. ◇ Custom Chemicals ◇ New Materials: Fluoro-Materials, Silicone Materials, Engineering Plastics, Functional Polymer Materials, Nanometer Materials, Membrane Materials, Specialty Fibers,、Fine Ceramics, Photographic Applications. ◇ Chemical Equipments: Pulverization Machinery, Driers, Rectifying Equipments, Sealing Equipments, Analytical & Testing Instruments, Energy Conservation & Environmental Protection Equipments, Packaging, Storage and Transportation.  

Membran
Nachricht
12.12.07

Chemische Nanofabrik in Sachsen
Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434

Membran
Nachricht
07.12.07

Chemische Nanofabrik in Sachsen
Mit drei Millionen Euro fördert die Deutsche Forschungsgemeinschaft (DFG) in den kommenden drei Jahren ein Forschungsvorhaben, das Wissenschaftler der Technischen Universitäten Chemnitz und Dresden sowie der Universität Leipzig erarbeiteten. Die Forschergruppe "From Local Constraints to Macroscopic Transport" beschäftigt sich mit Transportprozessen in komplexen Materialien, beispielsweise mit der Diffusion in porösen Strukturen oder biologischen Membranen. Erstmals haben sich Wissenschaftler dieser drei sächsischen Universitäten in einer Forschergruppe zusammengeschlossen und bündeln ihr Wissen zur Bewegung auf der Nanometerskala. Mit ihren Untersuchungen wollen sie die Grundlagen für die Entwicklung neuer nano- und biotechnologischer Anwendungen schaffen. Von den Forschungsergebnissen könnte die Vision einer chemischen Nanofabrik - also einer winzigen Fabrik, die aus elementaren chemischen Bausteinen neue Materialien herstellt - profitieren. Die Forscher erhoffen sich neue Informationen über die Transportmechanismen auf der Nanometerskala. Diese könnten in Zukunft die Herstellung effizienter Transportwege - also kleiner "Nanofließbänder" - in den Nanofabriken ermöglichen. Solche Transportprozesse sind auch die Grundlage für die Funktion oder Fehlfunktion in Zellen. Proteine und andere Botenstoffe werden über verschiedene Mechanismen in und zwischen Zellen transportiert. Die Experimente zur Diffusion in biologischen Membranen ermöglichen deshalb auch ein besseres Verständnis, wie Krankheiten, beispielsweise Alzheimer, entstehen. Von der TU Chemnitz sind Prof. Dr. Christian von Borczyskowski, Professur Optische Spektroskopie und Molekülphysik, und sein Wissenschaftlicher Mitarbeiter Dr. Jörg Schuster sowie Prof. Dr. Günter Radons, Professur Komplexe Systeme und Nichtlineare Dynamik, beteiligt. Außerdem werden zwei Doktoranden die Chemnitzer Wissenschaftler unterstützen. Sie beschäftigen sich vor allem mit der Untersuchung von Diffusionsprozessen in ultradünnen Flüssigkeitsfilmen. "Dazu setzen wir Farbstoffmoleküle in die Flüssigkeiten ein und beobachten mit hochempfindlichen Mikroskopen, wie sich diese Moleküle bewegen. In dünnen Flüssigkeitsfilmen läuft diese Diffusion völlig anders ab, als in größeren Flüssigkeitsvolumen", erklärt Dr. Jörg Schuster. Die Untersuchung dieser Prozesse ermöglicht vor allem ein besseres Verständnis katalytischer Vorgänge auf der Nanometerskala. Weitere Informationen erteilen Prof. Dr. Christian von Borczyskowski, Telefon 037153133035, E-Mail borczyskowski@physik.tu-chemnitz.de , und Dr. Jörg Schuster, Telefon 037153133013, E-Mail schuster@physik.tu-chemnitz.de. Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=306434

Membran
Nachricht
04.04.07

An der TU Dresden werden neue Methoden der Wasserstoffspeicherung erforscht
Wasserstoff ist ein ideales Material zur Energiespeicherung. Das Gas lässt sich ressourcenschonend mittels regenerativer Energiequellen herstellen und kann ohne Verbrennungsprozesse direkt elektrochemisch in elektrische Energie umgewandelt werden. Allerdings ist Wasserstoff unter Normalbedingungen ein Gas mit geringer Energiedichte, daher sind nicht nur Autohersteller weltweit auf der Suche nach effektiven Speichermöglichkeiten. Wissenschaftler in der Fachrichtung Chemie (Physikalische Chemie) der TU Dresden arbeiten deshalb schon seit einiger Zeit an der Entwicklung neuer Festkörperspeicher, in denen sich Wasserstoff in die Zwischenräume des Gerüstmaterials anlagert. Die Eigenschaften dieser neu zu entwickelnden Werkstoffe, Kohlenstoffnanostrukturen mit geeigneten "Spacer-Molekülen" oder die so genannten MOFs (Metal Organic Frameworks), werden am Computer simuliert, ihre Stabilität, ihre Speicherkapazität und ihre Wärmeleitfähigkeit vorhergesagt. Trotz der relativ geringen Anziehungskraft der Gerüste der Nanostrukturen auf den Wasserstoff erlauben es nanostrukturierte Materialien, nennenswerte H2-Speicherkapazitäten zu erreichen. Die umfangreichen Berechnungen der Arbeitsgruppe wurden in den vergangenen Jahren unter anderem am damals schnellsten Supercomputer der Welt, dem "Earth Simulator" in Yokohama (Japan), durchgeführt. Nun bietet der neue Hochleistungsrechner am Zentrum für Informationsdienste und Hochleistungsrechnen der TU Dresden die Möglichkeit, die Simulationen kostengünstiger und zeitnah an der eigenen Universität durchzuführen. Die in der Arbeitsgruppe entwickelte Software nutzt die Vorzüge von Supercomputern mit global verfügbarem Speicher und ist somit optimal für den Einsatz im lokalen Rechenzentrum. Denn im Gegensatz zu den weltweit immer häufiger eingesetzten Computerclustern, die aus unabhängigen Einzelrechnern zusammengesetzt sind, ermöglicht er den gleichzeitigen Zugriff seiner Prozessoren auf den gemeinsamen immensen Hauptspeicher. Erste Tests auf der neuen Maschine zeigen, dass quantenmechanische Computersimulationen von immer komplexeren Systemen mit bis zu 100.000 Atomen unter Ausnutzung der mehr als 1.800 parallel arbeitenden Einzelrechner möglich sein werden. Die Arbeitsgruppe von Prof. Gotthard Seifert arbeiten gegenwärtig daran, ihre Methoden und Software an die Möglichkeiten des neuen Supercomputers anzupassen. 15 Mitarbeiter, darunter sieben Doktoranden, befassen sich in der Arbeitsgruppe mit verschiedenen neuen Speichermaterialien auf der Grundlage der Kryoadsorption. Aber auch für andere Projekte der Arbeitsgruppe, etwa die Entwicklung neuer Schmierstoffe auf der Basis von Nanostrukturen, neue Membranmaterialien für Brennstoffzellen oder Bauelemente der Nanoelektronik, wird der Hochleistungsrechner des ZIH genutzt werden. Weitere Informationen: Prof. Dr. Gotthard Seifert, Technische Universität Dresden, Fachrichtung Chemie, Physikalische Chemie, Tel. 035146337637, Gotthard.Seifert@chemie.tu-dresden.de Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=274498

Membran
Nachricht
20.04.06

Die Körpersprache von Biomolekülen
Woher weiß eine Zelle, dass sie sich teilen soll? Wie erhält ein Enzym die Botschaft, ein bestimmtes Gen zu aktivieren? In welcher Weise werden Signale aus der Umwelt ins Zellinnere weitergeleitet? Schalter im Miniformat sorgen dafür, dass alle diese Prozesse nach Plan ablaufen. Dabei verständigen sich die Biomoleküle, meistens Proteine, in einer besonderen Sprache: Über Änderungen ihrer Form - auch Konformation genannt - leiten sie Signale weiter oder blockieren eine Reaktion. Die geringfügigste Änderung ihrer räumlichen Struktur kann dabei verheerende Fehlschaltungen zur Folge haben. Wird beispielsweise ein Proteinschalter, der das Signal für Zellteilung gibt, in seiner Stellung 'An' festgehalten, werden sich die Zellen unkontrolliert teilen und es entsteht Krebs. Diesen grundlegenden und faszinierenden molekularen Prozessen in den Schaltmolekülen der Zellen widmet sich die VolkswagenStiftung in ihrer Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion', die 1998 ins Leben gerufen wurde. Für acht Vorhaben in dieser Initiative bewilligt die Stiftung jetzt rund 3,3 Millionen Euro: 1.) 429.000 Euro für das Vorhaben 'Information transmission pathways in an allosteric protein' von Professor Dr. Wolfgang Hillen und Professor Dr. Yves Muller vom Institut für Biologie der Universität Erlangen-Nürnberg und Professor Dr. Peter Gmeiner vom Institut für Pharmazie und Lebensmittelchemie, ebenfalls Universität Erlangen-Nürnberg; 2.) 787.700 Euro für das Vorhaben 'TGF-beta signalling biosensors' von Dr. Marcos González-Gaintán vom Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, Professor Dr. James Smith vom Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, und Dr. Carsten Schultz, Gene Expression Unit am Europäischen Laboratorium für Molekularbiologie in Heidelberg; 3.) 375.800 Euro für das Vorhaben 'Substrate Control of the active conformation of the respiratory complex I' von Professor Dr. Thorsten Friedrich und Professor Dr. Bernhard Breit vom Institut für Organische Chemie und Biochemie der Universität Freiburg sowie Professorin Dr. Petra Hellwig von der Faculté de Chimie, Université Louis Pasteur, Strasbourg. Nähere Informationen zu diesen Vorhaben finden Sie im Folgenden - außerdem im Anschluss eine Übersicht der weiteren bewilligten Projekte Zu 1: Interne Kommunikation von Proteinen Wie erfährt die rechte Hälfte, was die linke gerade tut? Viele Proteine besitzen mindestens zwei räumlich voneinander getrennte Bindestellen, an denen Substrate oder andere Moleküle andocken können. Bei diesen 'allosterischen' Proteinen wird in der Regel die Aktivität der einen Bindestelle vom Zustand der anderen gesteuert. Bindet also ein so genanntes Effektormolekül an der einen Seite, wird diese Information über Änderung der räumlichen Form an die andere Bindestelle weitergegeben. Das Resultat ist auch dort eine Konformationsänderung, die nun eine weitere Aktivität zulässt oder stoppen kann. Zwar hat man heute mit Kristallstrukturen bereits eine Reihe von Proteinen mit Substraten und Effektoren dreidimensional sichtbar machen können - doch Regeln für die Mechanik und Energetik proteininterner Kommunikation gibt es bisher nicht. Hier setzen die Wissenschaftler aus Erlangen-Nürnberg mit ihrem Projekt an: Am Beispiel des Tet-Repressors wollen sie die Informationsweitergabe analysieren und allgemein gültige Prinzipien herausfinden. Tetrazyklin ist als Antibiotikum bekannt, das die bakterielle Proteinsynthese hemmt. Es fungiert beim Tet-Repressor als Effektormolekül, reguliert über Bindung an den Repressor die Genexpression. Der Tet-Repressor ist strukturell sehr gut untersucht und bietet sich als Modell an. Die Wissenschaftler haben bereits Varianten des Rezeptors mit veränderter Allosterie sowie ein Peptid isoliert, das den Rezeptor durch eine andere Strukturänderung induziert als Tetrazyklin. Auch neuartige Tetrazyklinderivate werden getestet, um den Kontaktketten zwischen den Bindestellen auf die Spur zu kommen. Die Kombination von Molekulargenetik, Synthesechemie und strukturellen Methoden erhöht die Chancen, zu allgemein gültigen Prinzipien zu kommen. ------------------------------- Kontakte zu Projekt 1 Universität Erlangen-Nürnberg Institut für Biologie Lehrstuhl für Mikrobiologie Prof. Dr. Wolfgang Hillen Telefon: 091318528081 E-Mail: whillen@biologie.uni-erlangen.de Institut für Biologie Lehrstuhl für Biotechnik Prof. Dr. Yves Muller Telefon: 091318523081 E-Mail: ymuller@biologie.uni-erlangen.de Institut für Pharmazie und Lebensmittelchemie Prof. Dr. Peter Gmeiner Telefon: 091318522584 E-Mail: gmeiner@pharmazie.uni-erlangen.de ------------------------------------------ Zu 2: Biosensoren machen Signalketten sichtbar Nicht einzelne Signale, sondern komplexe Signalkaskaden sorgen dafür, dass sich ein Embryo entwickeln kann. Wichtige Signale geben dabei die Wachstumsfaktoren der Transforming Growth Factor beta-Familie, kurz TGF-?. Sie werden bereits intensiv erforscht, denn wenn ihre Signalfunktion im Zellwachstum außer Kontrolle gerät, können Krebs und andere Krankheiten entstehen. Während die molekularen Aspekte der Signalkette und die konformationellen Änderungen einzelner Komponenten schon recht gut bekannt sind, weiß man wenig über die zeitliche und räumliche Dynamik der Prozesse. Hierfür interessiert sich das Team aus Dresden, Heidelberg und Cambridge: Die Forscher wollen Biosensoren für verschiedene Komponenten der Signalkette 'bauen' und damit die Etappen der Signalweiterleitung in Echtzeit verfolgen. Biosensoren sind Messfühler, die mit biologischen Komponenten ausgestattet sind. Ihr Einsatz macht es möglich, Protein-Protein-Wechselwirkungen in der lebenden Zelle auch quantitativ zu bestimmen. Ziel der Forscher ist es vor allem, TGF-Signale sowohl während der Embyonalentwicklung als auch für bestimmte Krankheiten zu messen. ------------------------------------------------------------- Kontakte zu Projekt 2 Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden Dr. Marcos González-Gaitán Telefon:03512102539 E-Mail: gonzalez@mpi-cbg.de University of Cambridge Prof. Dr. James Smith Telefon: 00441223334133 E-Mail: j.bate@gurdon.cam.ac.uk Europäisches Laboratorium für Molekularbiologie, Heidelberg Dr. Carsten Schultz Telefon: 06221387210 E-Mail: carsten.schultz@EMBL-Heidelberg.de ------------------------------------------ Zu 3: Energiegewinn durch räumliche Bewegungen Auch bei der Energiegewinnung von Zellen spielen Konformationsänderungen von Molekülen und Molekülkomplexen die entscheidende Rolle. In der Atmungskette - dem entscheidenden Prozess im Energiestoffwechsel - wird ATP bereitgestellt, die universelle Energiewährung, die alles antreibt. Der erste Komplex der Zellatmung ist die NADH:Ubichinon-Oxidoreduktase, ein Enzym, das eine wichtige Schaltstelle darstellt: Es überträgt Elektronen vom Elektronencarrier NADH auf Ubichinon und nutzt die dabei freiwerdende Energie, um Protonen von der Innenseite der Membran nach außen zu transportieren. Auf diese Weise entsteht ein Membranpotenzial, das zum Aufbau des Energieträgers ATP, aber auch für Transportvorgänge und andere energieabhängige Vorgänge genutzt werden kann. Der Mechanismus dieses wichtigen Enzymkomplexes am Beginn der Atmungskette ist noch weitgehend unverstanden. Klar ist, dass die Bindung von NADH, nicht jedoch von NADPH - der phosphorylierten Form - große räumliche Bewegungen auslöst und das Molekül für Ubichinon öffnet. Die Wissenschaftler aus Freiburg und Strasbourg wollen in dem von der VolkswagenStiftung geförderten Vorhaben untersuchen, welche Konformationsänderungen abgewandelte NADH-Derivate zur Folge haben. Die Untersuchungen an der NADH:Ubichinon-Oxidoreduktase sind auch für die Medizin relevant, denn eine Fehlfunktion dieses Komplexes ist mit neurodegenerativen Krankheiten wie dem Parkinson-Syndrom verknüpft. -------------------------------------- Kontakte zu Projekt 3: Universität Freiburg Institut für Organische Chemie und Biochemie Prof. Dr. Thorsten Friedrich Telefon: 07612036060 E-Mail: tfriedri@uni-freiburg.de Prof. Dr. Bernhard Breit Telefon: 07612036051 E-Mail: bernhard.breit@orgmail.chemie.uni-freiburg.de Université Louis Pasteur, Strasbourg Prof. Dr. Petra Hellwig E-Mail: hellwig@chimie.u-strasbg.fr -------------------------------------- Bewilligt wurden in der Initiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' auch folgende fünf Vorhaben: 4.) 461.800 Euro für das Vorhaben 'Synthetic selectivity filters for porin-like ion channels' von Professor Dr. Ulrich Koert, Professor Lars-Oliver Essen und Dr. Henning Mootz vom Fachbereich Chemie der Universität Marburg; Kontakt zu Projekt 4: Universität Marburg Fachbereich Chemie Professor Dr. Ulrich Koert Telefon: 064212826970 E-Mail: koert@chemie.uni-marburg.de ----------------------------------- 5.) 79.400 Euro für das Vorhaben 'Conformation-activity relationship of the archazolids: Development of a novel class of highly potent V-ATPase inhibitors' von Dr. Dirk Menche von der Abteilung Medizinische Chemie der Gesellschaft für Biotechnologische Forschung in Braunschweig (GBF) und Dr. Teresa Carlomgno vom Max-Planck-Institut für biophysikalische Chemie in Göttingen; Kontakt zu Projekt 5: GBF Braunschweig Abteilung Med. Chemie Dr. Dirk Menche Telefon: 05316181346 E-Mail: dirk.menche@gbf.de ---------------------------------- 6.) 359.000 Euro für das Vorhaben 'Elucidation of the conformational dynamics of the spliceosome using small molecule inhibitors' von Professor Dr. Reinhard Lührmann und Privatdozent Dr. Markus Wahl von der Abteilung Zelluläre Biochemie am Max-Planck-Institut für biophysikalische Chemie in Göttingen und Professor Dr. Herbert Waldmann vom Fachbereich Chemie, Chemische Biologie, Universität Dortmund; Kontakt zu Projekt 6: Max-Planck-Institut für biophysikalische Chemie Abt. Zelluläre Biochemie Prof. Dr. Reinhard Lührmann Telefon: 05512011405 E-Mail: reinhard.luehrmann@mpi-bpc.mpg.de ------------------------------------------ 7.) 398.800 Euro für die Fortsetzung des Vorhabens 'Pleckstring domains: from allosteric regulation of protein function towards novel tools for monitoring intracellular reactions' von Dr. Carsten Schultz und Dr. Michael Sattler, beide EMBL - Europäisches Laboratorium für Molekularbiologie in Heidelberg, und Professor Dr. Mathias Gautel, Cardiovascular Division der GKT School of Medicine, King's College, London; Kontakt zu Projekt 7: EMBL, Heidelberg Dr. Michael Sattler Telefon: 06221387552 E-Mail: sattler@embl-heidelberg.de ----------------------------------- 8.) 393.100 Euro für die Fortsetzung des Vorhabens 'Modulation of the slow conformational dynamics in Ras and Ras-related proteins by drugs: development of an new type of specific Ras-inhibitor' von Professor Dr. Hans-Robert Kalbitzer vom Institut für Biophysik und physikalische Biochemie sowie Professor Dr. Burkhard König vom Institut für Organische Chemie, beide Universität Regensburg, und Professor Dr. Christian Herrmann von der Fakultät für Chemie, Physikalische Chemie, Universität Bochum. Kontakt zu Projekt 8: Universität Regensburg Institut für Biophysik und physikalische Biochemie Prof. Dr. Hans-Robert Kalbitzer Telefon: 09419432595 E-Mail: hans-robert.kalbitzer@biologie.uni-regensburg.de -------------------------------------------------------- Die Förderinitiative 'Zusammenspiel von molekularen Konformationen und biologischer Funktion' wird in diesem Jahr eingestellt. Sie hat dazu beigetragen, das Gebiet der Chemischen Biologie in Forschung und Lehre in der deutschen wie europäischen Forschungslandschaft zu verankern. Über die gesamte bisherige Laufzeit wurden - einschließlich der jetzigen Vorhaben - 125 Bewilligungen ausgesprochen, für die rund 23 Millionen Euro bereit gestellt wurden. Mit Stichtag 15. September 2006 können die letzten Anträge eingereicht werden. Kontakt VolkswagenStiftung Presse- und Öffentlichkeitsarbeit Dr. Christian Jung Telefon: 05118381380 E-Mail: jung@volkswagenstiftung.de Kontakt Förderinitiative der VolkswagenStiftung Dr. Matthias Nöllenburg Telefon: 05118381290 E-Mail: noellenburg@volkswagenstiftung.de

Membran
Nachricht
06.03.06

Forscher klären katalytischen Mechanismus von antiviralem Protein
Die Aktivität eines menschlichen Proteins, das an der Abwehr von Viren und anderen Krankheitserregern beteiligt ist, konnte der RUB-Chemiker Prof. Dr. Christian Herrmann in Zusammenarbeit mit Forschern des Max-Planck-Instituts in Dortmund und einem französischen Labor auf molekularer Ebene aufklären: Ein funktionelles Merkmal der Proteinklasse hGBP1 (humanes Guanylat-bindendes Protein 1) besteht in der katalytischen Spaltung von sog. Cofaktor-Molekülen. Damit gehen die geordnete Zusammenlagerung (Assemblierung) und strukturelle Umwandlungen der Proteine einher, die für ihre biologische Wirkung von Bedeutung sind. Das von den Forschern erarbeitete Modell kann zum Verständnis der Funktionsweise einer Vielzahl ähnlicher Proteine dienen und Hinweise für die gezielte Behandlung verschiedener Krankheiten geben. Über ihre Ergebnisse berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazin NATURE. Funktionsweise molekularer Maschine aufgeklärt Das Enzym hGBP1 gehört zu einer Klasse von Proteinen, von denen einige eine wichtige Funktion bei der Abwehr von Viren haben, während andere für das Abschnüren von Membranbläschen im Innern der Zelle verantwortlich sind - dies dient der Aufnahme von Substanzen in die Zelle und der Regulation von Rezeptoren an der Zelloberfläche. Von hGBP1 ist eine antivirale Wirkung und ein Einfluss auf die Bildung von Blutgefäßen (Angiogenese) bekannt. Charakteristisch für das Protein ist die Bindung und katalytische Spaltung eines Cofaktors, der einerseits die Struktur und damit die biologische Aktivität des jeweiligen Proteins reguliert. Zum anderen wird durch diesen Spaltungsvorgang bei einigen Proteinen aber auch die Energie für größere, strukturelle Änderungen und damit für die mechanische Arbeit dieser kleinen, molekularen Maschinen geliefert. 'Wir haben herausgefunden, dass die hGBP1-Moleküle nach Bindung eines bestimmten Cofaktors miteinander kommunizieren und eine katalytische Spaltung des Cofaktors stimulieren', erklärt Prof. Herrmann. Zum ersten Mal konnten die Forscher zeigen, wie Proteine durch Selbst-Assemblierung eine katalytische Wirkung hervorrufen, die auf ihr eigenes Verhalten und ihre Funktion zurückstrahlt. Interdisziplinärer Erfolg Das Forschungsergebnis ist das Resultat langjähriger Arbeiten zur Aufklärung eines Katalysemechanismus auf molekularer Ebene. Mit Hilfe vielfältiger experimenteller Methoden aus den Bereichen der biophysikalischen Chemie, der Biochemie und der Röntgen-Strukturanalyse ist es gelungen, die Funktionsweise eines Enzyms in molekularem Detail darzustellen. Durch einen experimentellen Trick konnten sogar sehr kurzlebige Zustände des Enzyms, die besonders kritisch für den katalytischen Vorgang sind, festgehalten und näher untersucht werden. Es ist gelungen, die Beobachtungen und Teilerkenntnisse, die sich mit den verschiedenen Methoden ergaben, zu einem stimmigen Modell zusammenzuführen. 'Es hat sich einmal mehr gelohnt, die interdisziplinäre Arbeit zu suchen und eine wissenschaftliche Fragestellung von allen Seiten zu beleuchten', so Prof. Herrmann. Anwendung für Therapien Die untersuchte Klasse von Proteinen hat außerordentlich vielseitige, biologische Funktionen. Gestörte (mutierte) Varianten dieser Proteine sind für zahlreiche Krankheiten verantwortlich, darunter auch Krebs. Untersuchungen der molekularen Mechanismen zeigen nicht nur, wie ein Protein funktioniert, sondern auch, wie und warum es bei einer bestimmten Störung nicht mehr funktioniert. Dies gibt der Forschung Ansatzpunkte für die Entwicklung von Wirkstoffen und zeigt Möglichkeiten auf, wie eine Krankheit gezielt zu bekämpfen ist. Das hGBP1 kann als Modell für viele andere Enzyme dieser Klasse dienen. 'Für unsere Promovierenden und Studierenden ist an unserer Arbeit besonders faszinierend, dass sie molekulare Grundlagen des Lebens erforschen, die eine deutlich erkennbare Relevanz auch für medizinische Anwendungen haben', so Prof. Herrmann. Titelaufnahme Agnidipta Ghosh, Gerrit J. K. Praefcke, Louis Renault, Alfred Wittinghofer & Christian Herrmann: How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. In NATURE, Volume 439, Number 7080, 2.März 2006 Weitere Informationen Prof. Dr. Christian Herrmann, Lehrstuhl für Physikalische Chemie I (Prof. Dr. Christof Wöll), Ruhr-Universität Bochum, 44780 Bochum, Tel. 02343224173, E-Mail: chr.herrmann@rub.de Link zur Pressemitteilung: http://www.pressrelations.de/new/standard/dereferrer.cfm?r=223369 Quelle: www.pressrelations.de

Membran
Nachricht
12.02.06

Mikroskope sehen einzelne Moleküle
Die Mikroskope sind inzwischen so empfindlich, dass die besten unter ihnen auf diese Weise sogar einzelne Moleküle erspähen können. Selbst Filmaufnahmen sind mit der Technik möglich. Die Geräte ermöglichen den Blick auf ein Gewimmel von Tausenden verschiedener Eiweißstoffe - jeder einzelne hat seine lebenswichtige Aufgabe in der komplizierten chemischen Choreographie der Zellen, die ganze Organismen und letztlich denkende, fühlende Wesen entstehen lässt. Haucke hat mit seinem jungen Team auf diese Weise gerade einen neuen Akteur entdeckt: Das Molekül 'Stonin 2' trägt dazu bei, dass Nervenzellen dauerhaft Reize weiterleiten können, ohne bei längerer Beanspruchung zu ermüden. Ein ähnliches Molekül kennt man bereits bei Fruchtfliegen - wenn bei ihnen das Eiweißmolekül 'Stoned' durch eine Mutation defekt ist, dann erstarren die Fliegen unter bestimmten Bedingungen wie versteinert. Stonin 2 findet man beim Menschen vor allem im Gehirn und dort gehäuft im Hippocampus, einer Hirnregion, die für Lernen und Gedächtnis zuständig ist. Was das Molekül dort aber genau bewirkt, war bislang unklar. Jetzt ist Volker Haucke in Zusammenarbeit mit Jürgen Klingauf vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen der entscheidende Schnappschuss gelungen, und er hat damit Licht in einen bislang noch nicht genau verstandenen Vorgang bei der Entstehung von Nervenimpulsen gebracht. Jede der hundert Billionen Nervenzellen des Gehirns bildet an bis zu 10.000 Stellen Kontakte zu anderen Zellen aus. An diesen Kontaktstellen, den Synapsen, berühren sich die Zellen beinahe, aber nicht ganz - zwischen ihnen bleibt ein winziger Spalt. Ein ankommendes elektrisches Signal muss hier in eine chemische Botschaft übersetzt werden. Die Nervenzelle schüttet Neurotransmitter aus, die von den Nachbarzellen erkannt werden. Die Botenstoffe befinden sich zunächst in winzige Bläschen verpackt im Inneren der Zelle. Bei einem Signal verschmelzen die Bläschen mit der Außenhaut der Zelle und stülpen gleichsam ihr Inneres nach außen. Diese Verschmelzung wird unter anderem durch ein Eiweißmolekül namens Synaptotagmin vermittelt, das in der hauchdünnen Membran sitzt, aus der die Bläschen gebildet sind. Das Problem dabei: Nervenzellen können im Abstand von fünf Millisekunden Signale senden, und jedes Mal läuft der gleiche Prozess aufs Neue ab. Schon bald wären alle mit Neurotransmittern gefüllten Bläschen erschöpft. Die Lösung besteht in einem flotten Recycling-Prozess: Im gleichen Maße wie die Bläschen aus dem Inneren der Zelle mit der Zellmembran verschmelzen, so schnüren sie sich auch wieder ab, wandern zurück und werden neu befüllt. Praktisch dabei ist, dass auch das nötige Synaptotagmin dabei wieder eingesammelt wird, und an dieser Stelle kommt der von Haucke entdeckte Einsatz des Stonin 2. Im Inneren der Zelle bindet es gezielt an das in der Außenhaut gestrandete Synaptotagmin und beschleunigt damit den Recyclingprozess. 'Der ganze Kreislauf dauert nicht länger als 60 Sekunden', so Haucke, 'wir betrachten da ein Fließgleichgewicht, das schnell und dabei hochselektiv arbeitet.' Als nächstes möchte Haucke herausfinden, welche Rolle Stonin 2 beim Denken spielt. Ohne Synaptotagmin können Säugetiere nicht überleben, und selbst kleine Defekte können beim Menschen schon zu motorischen Störungen oder Schizophrenie führen. Die Rolle von Stonin 2 scheint subtiler. 'Vielleicht wäre ein menschliches Gehirn ohne Stonin 2 bei intensiven Reizen schneller überlastet, vielleicht gäbe es auch epileptische Anfälle', spekuliert Haucke. Das Rätsel der höheren Denkvorgänge ist ein noch lange nicht gelöstes Puzzle - mit Stonin 2 sind die Forscher auf ihrem langen Weg aber einen Schritt vorangekommen. Literatur: M. K. Diril, M. Wienisch, N. Jung, J. Klingauf, V. Haucke: 'Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization', in Dev. Cell 10 (Feb 2006), S. 233244 Weitere Informationen erteilt Ihnen gern: Prof. Dr. Volker Haucke, Institut für Chemie der Freien Universität Berlin, Tel.: 03083856922, E-Mail: vhaucke@chemie.fu-berlin.de www.pressrelations.de
 
Stellenanzeigen / Jobs
 
 
 
 
Allgemeine Anzeigen
 
 
 
 
 »  Stellen auf den Kanarischen Inseln
 »  Chemikalien für die eigene Firma
 »  3D-Drucker in der chemischen Industrie
 »  Faehigkeiten, die ein Chemiker haben sollte
Partner:
Industrie:  
  |  
  |  
  |  
  |  
  |  
  |  
  |  
  |  
Dienstleistungen:  
  |  
  |  
  |  
  |  
  |  
  |  
Tourismus und Freizeit:  
  |  
  |  
  |